• Title/Summary/Keyword: PIN diode

Search Result 165, Processing Time 0.028 seconds

Design and Fabrication of Broadband Phase Shifter Based on Vector Modulator (벡터 모듈레이터형 광대역 위상 변위기의 설계 및 제작)

  • 류정기;오승엽
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.7
    • /
    • pp.734-740
    • /
    • 2003
  • In this paper, A Vector Modulator based a wideband analog phase shifter is realized with four P-I-N diode attenuators, an asymmetric coupled line coupler, a symmetric coupled line coupler, and a power combiner. Simple configuration to have advantages in cost, size, power, and the number of passive circuits is presented. The phase variation due to phase and amplitude error of a P-I-N diode attenuator is derived and used to optimize the overall circuit. The phase shifter shows a total phase shift of 360$^{\circ}$, a 8.2$^{\circ}$maximum phase error, and a 16${\pm}$2.5 dB insertion loss over the wide frequency range of 1 GHz to 3 GHz.

Annular ring slot antenna with a variable circular polarized mode characteristic (가변 원형편파 모드 특성을 갖는 원형 링 슬롯 안테나)

  • Kim, Yong-Jin;Kim, Jung-Han;Lee, Hong-Min
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.1
    • /
    • pp.78-84
    • /
    • 2008
  • In this paper, the reconfigurable annular ring slot antenna with circular polarization diversity is proposed for SDMB(Satellite Digital Multimedia Broadcasting) system. The proposed antenna consists of a ring slot with four tuning stubs. Four PIN diodes are attached to switch circular polarization diversity. By switching the diodes ON or OFF, the proposed antenna can be operated either RHCP mode or LHCP mode. The experimental result shows that the proposed antenna has an impedance bandwidth(VSWR${\leq}$2) of 570MHz(2.47-3.04GHz) at LHCP mode, an impedance bandwidth (VSWR${\leq}$2) of 560MHz(2.45-3.01GHz) at RHCP mode, a maximum gai of 3.1dBi at RHCP mode, 4.76dBi at LHCP mode. The 3dB CP bandwidth of about 100MHz at both RHCP and LHCP mode is achieved at the center frequency 2.63GHz. The proposed antenna is suitable for application such as mobile satellite communications, WLAN(Wireless Local Area Networks), and broadband wireless communication systems.

The Study of the Optical CT Temperature Characteristic Using Faraday Effects (Faraday효과를 이용한 광CT의 온도특성에 관한 연구)

  • Jeon, Jeo-Il;Heo, Soon-Young;Park, Won-Zoo;Lee, Kwang-Sik;Kim, Jung-Bae;Kim, Min-Soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.1
    • /
    • pp.136-142
    • /
    • 2005
  • In this paper, we wrote about the basic experimentation of Optical CT's temperature characteristic to measure high-current in a super-high-voltage electric power equipment which is using Faraday effect. We used the 1310[nm] Laser Diode as the light source and PIN Photodiode as receiver. For the transmission line of light, we used 30[m] single mode fiber which could maintain the state of polarization in the optical fiber. For the experiment, the temperature transformation device make by aluminium. the The range of current was from 400[A] and 1300[A] and the range of temperature was from $-40[^{\circ}C]\;to\;50[^{\circ}C]$. In a same experimental condition, magnitude increased input current increase follow by increasing proportion of input current.

Ambient dose equivalent measurement with a CsI(Tl) based electronic personal dosimeter

  • Park, Kyeongjin;Kim, Jinhwan;Lim, Kyung Taek;Kim, Junhyeok;Chang, Hojong;Kim, Hyunduk;Sharma, Manish;Cho, Gyuseong
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.1991-1997
    • /
    • 2019
  • In this manuscript, we present a method for the direct calculation of an ambient dose equivalent (H* (10)) for the external gamma-ray exposure with an energy range of 40 keV to 2 MeV in an electronic personal dosimeter (EPD). The designed EPD consists of a 3 × 3 ㎟ PIN diode coupled to a 3 × 3 × 3 ㎣ CsI (Tl) scintillator block. The spectrum-to-dose conversion function (G(E)) for estimating H* (10) was calculated by applying the gradient-descent method based on the Monte-Carlo simulation. The optimal parameters for the G(E) were found and this conversion of the H* (10) from the gamma spectra was verified by using 241Am, 137Cs, 22Na, 54Mn, and 60Co radioisotopes. Furthermore, gamma spectra and H* (10) were obtained for an arbitrarily mixed multiple isotope case through Monte-Carlo simulation in order to expand the verification to more general cases. The H* (10) based on the G(E) function for the gamma spectra was then compared with H* (10) calculated by simulation. The relative difference of H* (10) from various single-source spectra was in the range of ±2.89%, and the relative difference of H* (10) for a multiple isotope case was in the range of ±5.56%.

Design of a 4-bit Digital Phase Shifter in Quasimillimeter Wave Band for Satellite Communication (준밀리미터파대 위성통신용 4-bit 디지털 위상변위기의 설계)

  • 신동환;임인성;김우재;민경일;오승엽
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.3
    • /
    • pp.461-470
    • /
    • 1999
  • This paper presents the description of a 4-bit digital p-i-n diode phase shifter that was designed for quasimillimeter wave band satellite receiver to use in phased-array systems. 180$^{\circ}$ and 90$^{\circ}$ cells are designed in reflection type that consists of a 3-dB rat-race hybrid coupler, 45$^{\circ}$ and 22.5$^{\circ}$ cells are designed in loaded-line type to reduce the size of circuit and the number of diode to be used. The 4-bit phase shifter uses eight p-i-n diodes mounted in the microstrip circuit. The average insertion loss for the 16 phase states is 6.92dB over the 19.8~20.3 GHz band and maximum phase error is 6.2$^{\circ}$ at 20 GHz.

  • PDF

Microstrip Antenna with Switchable Polarization (편파 변환 기능을 갖는 마이크로스트립 안테나)

  • Jung Dongkeun;Ha Cheunsoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.4 s.95
    • /
    • pp.397-401
    • /
    • 2005
  • In this paper, a slot-coupled microstrip antenna with switchable polarization is proposed for the polarization diversity applications in the complicated communication environment. The proposed antenna is fed by a microstrip line through one of two slots located with the interval of $\lambda{g}/4$ in the ground plane. By switching the PIN diode between opened and shorted termination which is located at the tip of the microstrip line, the switching function between horizontal and vertical polarization was confirmed experimentally. The measured resonant frequencies of the fabricated antenna are $2.41\;\cal{GHz}\;2.40\;\cal{GHz}$ and the cross polarization levels are $19\;\cal{dB},\;23\;\cal{dB},\;the\;-10\;\cal{dB}$ return loss bandwidths are $95\;\cal{MHz}\;100\;\cal{MHz}$ in horizontal and vertical polarization, respectively, and the antenna gain is almost $6\;\cal{dBi}$.

A Ku-Band Hair-Pin Resonator Oscillator with a New Varactor Coupled Line Structure (개선된 바랙터 결합 선로를 이용한 Ku-Band 헤어핀 발진기 설계)

  • Choi, Kwang-Seok;Won, Duck-Ho;Yun, Sang-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.1
    • /
    • pp.83-89
    • /
    • 2010
  • In this paper, we propose a new varactor coupled line structure and design the VCO using the proposed structure. The proposed coupled line structure removes the reflected signals from the varactor diode using an added $\lambda$/4 transmission line. The frequency synthesizers are designed using the PLL technique at Ku-band. The synthesizer using the proposed coupled structure has 38 MHz frequency tuning range and -97 dBc/Hz phase noise characteristic at 100 KHz offset frequency. The measured results show improved tuning range as well as the improved phase noise characteristics compared to the conventional designs.

A Study On the Design of C-Band Phase Shifter Using PIN Diode (PIN 다이오드를 이용한 C-Band 위상 변위기의 설계에 관한 연구)

  • Kim, Han-Suk;Kim, Hoon-Yong;Lee, Chang-Sik;Lee, Jong-Arc
    • Journal of IKEEE
    • /
    • v.3 no.2 s.5
    • /
    • pp.259-267
    • /
    • 1999
  • In this paper, a C-band 6-bit phase shifter is designed and fabricated and design techniques for each phase bit are represented. We applied the loaded line type to $5.625^{\circ},\;11.25^{\circ},\;22.5^{\circ}\;and\;45^{\circ}$ phase bits and the hybrid coupled type to $90^{\circ}$ phase bit and the switched line type to $180^{\circ}$ phase bit, respectively on a microstrip copper substrate.

  • PDF

Fabrication of an IrDA transceiver module for wireless infrared communication system OPR 1002 (850nm 적외선을 이용한 근거리 무선통신 시스템용 송수신 모듈 제작)

  • 김근주
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1B
    • /
    • pp.175-182
    • /
    • 2000
  • (A hybrid-type wireless infrared data communication module was fabricated by using the light emitting andabsorption diodes with the one-chip of integrated digital circuits. The light emitting diode with the peak spectrum of 850 nm was made from compound semiconductor material of AIGaAs and shows high speed signal transmission with the delay time of 60 nsec for the light direction angle of 30". The Si PIN photodiode showsthe good absorption rate for the range of wavelength of 450-1050 nm and convex-type epoxy lens was utilized for the spectrum filtering on the visible-range spectrum below 750 nm, The data transmission speed is 115.2 kbps and the fabricated module satisfies on the IrDA 1.0 SIR standard requirements.)ments.)

  • PDF

Frequency Reconfigurable Antenna for Multi Mode & Multi Band (MMMB) Communication Systems (셀룰러 및 커낵티비티 대역 통합용 동시동작모드 주파수 재구성 안테나)

  • Park, Se-Hyun;Yang, Chan-Woo;Jung, Chang-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.6
    • /
    • pp.1170-1174
    • /
    • 2009
  • Two frequency-reconfigurable antennas have been designed and combined in a space with limited volume, i.e., 40mm ${\times}$ 20mm ${\times}$ 6mm. Each antenna can be reconfigured to operate at different frequency bands depending on the state of an embedded switch, which is implemented using a PIN diode. The first antenna can be switched between 0.82GHz ${\sim}$ 0.96GHz band (GSM/ CDMA) and 1.7GHz ${\sim}$ 2.17GHz band (DCS/ PCS/ WCDMA), which are cellular bands. The second antenna can be switched between 3.4GHz ${\sim}$ 3.6GHz band (mWiMax) and 2.3GHz ${\sim}$ 2.5GHz, 5.15GHz ${\sim}$ 5.35GHz bands (WiBro/ WLAN 11a/b/g/n), which are connectivity bands. The proposed combined antenna operates both over cellular bands and connectivity bands concurrently. The choice of the operation bands is made independently by the states of the two switches.