• Title/Summary/Keyword: PID tuning

Search Result 497, Processing Time 0.025 seconds

Hybrid Intelligent System Using PSO/Bacterial Foraging and PID Controller Tuning

  • Kim Dong-Hwa
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.22-34
    • /
    • 2006
  • o GA-BF approach for improvement of learning and optimization in GA o GA-BF has better response on various test functions o Satisfactory PID controller tuning in AVR, motor vector control systems o Potentially useful in many practically important engineering optimization problems

  • PDF

Application of SIMC Based Quad-rotor Cascade Control by Using 1-axis Attitude Control Test-bench (1축 자세제어실험 장비를 이용한 SIMC 기반 쿼드로터 Cascade 제어기 적용에 관한 연구)

  • Choi, Yun-sung;You, Young-jin;Jeong, Jin-seok;Kang, Beom-soo
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.473-483
    • /
    • 2015
  • This paper reports the single-input-single-output cascade control by using 1-axis attitude control test-bench for quad-rotor UAV. The test-bench was designed as a see-saw shape using 2 motors and propellers, and to enable changing the center of gravity with the center of gyration using ballast. The experiment was carried out by constructing a PID-PID controller having a cascade structure with the test-bench. The SIMC based PID gain tuning process, which makes PID gain tuning easy, was grafted to cascade control. To graft SIMC method, the system parameter estimation result was conducted with second order time delay model by using Matlab-Simulink. Gain tuning was conducted by simulating with estimated system parameter. In this paper, the conventional application of SIMC was conducted and improved application was proposed for improving stability at tuning process.

A Study on the PID controller auto-tuning (PID제어기 자동동조에 관한 연구)

  • Cho, Hyun-Seob
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.630-632
    • /
    • 2009
  • The parameters of PID controller should be readjusted whenever system character change. In spite of a rapid development of control theory, this work needs much time and effort of expert. In this paper, to resolve this defect, after the sample of parameters in the changeable limits of system character is obtained, these parametrs are used as desired values of back propagation learning algorithm, also neural network auto tuner for PID controller is proposed by determing the optimum structure of neural network. Simulation results demonstrate that auto-tuning proper to system character can work well.

  • PDF

LQ-PID Controller Tuning for a Second-Order System with Time-Delay (시간지연을 갖는 2차 시스템의 LQ-PID제어기 동조)

  • Park, Taek-Seon;Suh, Byung-Suhl
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.67-70
    • /
    • 2002
  • This paper presents an optimal robust LQ-PID controller design method for a second order system with time-delay to meet design specifications. By LQR formulation of the second order system with time-delay, tuning parameters of PID controller are related by the weighting factors Q and R of cost function. The selection of the weighting factors Q and R are chosen to satisfy such the design specifications as overshoot and settling time.

  • PDF

An Optimal Controller Design for Gun Driving System of Combat Vehicles (기동전투차량의 포 구동장치 최적제어기 설계)

  • Kim, Ji-Young;Lee, Seok-Jae;Lyou, Joon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.62-65
    • /
    • 2004
  • An optimal robust controller design method for gun driving system is discussed in this paper. The parameters of the gun driving controller are tuned by using the LQR characteristics for the performance and robustness. Tuning method that optimize velocity error gives a significant improvement over the existing PID tuning methods. It is shown that the tuning result of real gun driving system which is regarded as rigidness model or stiffness model satisfy performance and robustness.

  • PDF

Rule Based Auto-Tuning PID Controller with Feedforward Path (피드포워드 경로를 갖는 규칙 기반 자동동조 PID제어기)

  • 윤양웅;박왈서
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.4
    • /
    • pp.355-361
    • /
    • 1992
  • In this paper, some rules for auto- tuning of feedback-feedforward controller in variable load and disturbance are presented. The parameters of feedback PID controller are determined by heuristic rules based on input regulation experiment, and the parameters of feedforward controller are determined by result rules based on spectral factorization, minimum variance, and polynomial equation. These heuristic and result rules are used as an element of the feedback loop in an auto-tuning feedback-feedforward controller. The robust and accurate control performance is demonstrated by computer simulation.

A Study on the Optimal Tuning of PID Controller (PID 제어기의 최적 동조)

  • 임동균;서병설
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.11
    • /
    • pp.27-36
    • /
    • 1993
  • It is well know that the tuning method of Yuwana-Seborg (1982) can not be even applied to the relatively small delay system due to the phase errors from the Pad approximation suh (1984, 85, 86). Jutan and Rodriguez(1984), lee(1989), Chen(1989), Lee and Edgar(1990), etc have been tried to improve it. In this stydy, such recent results and their problems are investigated. A new tuning method by "a frequency scale transformation". which is based on a previous result of Suh(1984). is proposed. It can reduce the magnitude of the phase error significantly.

  • PDF

Tuning of LQ-PID Controller-Time Domain Approach (LQ-PID 제어기 동조-시간영역에서의 접근)

  • Yang Ji Hoon;Suh Byung Suhl
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.1
    • /
    • pp.17-24
    • /
    • 2004
  • This paper proposes an optimal robust LQ-PID controller design method for the second order systems to satisfy the design specifications in time domain. The tuning parameters of LQ-PID controller are determinated by the relationships between the design parameters of the overshoot and the settling time which are design specifications in time domain, and the weighting factors Q and R in LQR. we can achieve the performance-robustness in time domain as well as the stability-robustness.

PID Learning Controller for Multivariable System with Dynamic Friction (동적 마찰이 있는 다변수 시스템에서의 PID 학습 제어)

  • Chung, Byeong-Mook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.57-64
    • /
    • 2007
  • There have been many researches for optimal controllers in multivariable systems, and they generally use accurate linear models of the plant dynamics. Real systems, however, contain nonlinearities and high-order dynamics that may be difficult to model using conventional techniques. Therefore, it is necessary a PID gain tuning method without explicit modeling for the multivariable plant dynamics. The PID tuning method utilizes the sign of Jacobian and gradient descent techniques to iteratively reduce the error-related objective function. This paper, especially, focuses on the role of I-controller when there is a steady state error. However, it is not easy to tune I-gain unlike P- and D-gain because I-controller is mainly operated in the steady state. Simulations for an overhead crane system with dynamic friction show that the proposed PID-LC algorithm improves controller performance, even in the steady state error.

DC Servo Motor Control using Model Reference PID Genetic Controller (모델기준 PID 유전 제어기를 이용한 DC 서보 전동기 제어)

  • Son, Jae-Hyun;Cho, Yang-Heang;Kim, Jae-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.141-145
    • /
    • 2001
  • In this paper, model reference PID genetic controller was proposed in order to overcome the difficulty of reflecting control performance required in the overall control system and defects of the adaptation performance in the PID genetic controller. The proposed controller comprised Inner feedback loop consisting of the PID controller and plant, and outer loop consisting of an genetic algorithm which was designed for tuning a parameter of the controller. A reference model was used for design criteria of a PID controller which characterizes and quantizes the control performance required in the overall control system. Tuning parameter of the controller is performed by the genetic algorithm. The performance of proposed algorithm was verified through experiment for the DC servo motor.

  • PDF