• Title/Summary/Keyword: PID controller PID

Search Result 1,741, Processing Time 0.032 seconds

Optimal control of impact machines using neural networks

  • Sasaki, Motofumi;Nakagawa, Makoto;Koizumi, Kunio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.91-94
    • /
    • 1995
  • A newly developed discrete-time control design method for impact machines is proposed. It is composed of identification and control using neural networks, where the optimal controller with saturationn and no use of velocity measurements is obtained. By computer simulation, the proposed method is demonstrated to be effective: as the training progresses, the cost function becomes smaller, the proposed control is superior to PID control tuned with Ziegler-Nichols (Z-N) parameters; robust performance with respect to uncertainty, disturbances and working time is so good.

  • PDF

A study of Genetic algorithms and PID controller for Inverted pendulum (도립진자를 위한 유전 알고리즘과 PID제어기에 관한 연구)

  • Puyn, Kang-O;Jang, Sung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1753-1754
    • /
    • 2008
  • 본 연구에서는 로켓이나 보행로봇의 기본이 되는 도립진자 제어를 위한 새로운 강인한 PID제어기가 제시된다. 도립진자의 PID제어기 파라미터가 제어환경에 용이하게 결정될 수 있도록 MATLAB 프로그램을 이용한 새로운 시스템을 구현하였다. 도립진자 자세제어 성능을 향상시키기 위한 유전알고리즘을 활용한 PID제어기 개발로 우수한 응답 특성을 얻을 수 있었다.

  • PDF

A Design of Impact Control Device for High-speed Mounting of Micro-Chips (소형 칩의 고속 표면실장을 위한 충격력 제어 장치의 설계)

  • 이덕영;김병만;심재홍;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.121-121
    • /
    • 2000
  • This paper presents a design of macro-micro system for high-speed mounting of micro-chips. A macro motion device is driven by DC servomotor and ball screw mechanism. To obtain fast response, a micro motion device utilizes a precision elector magnetic actuator In order to reduce peak impact force, We evaluate the design parameters that have an effect on it. And a characteristic of response is simulated using PID controller in velocity and force control.

  • PDF

Magnetic levitation characteristics of hybrid magnets according to the initial air gap length (자기부상용 하이브리드 전자석의 초기 공극 변화에 따른 특성 고찰)

  • Oh, Hyang-Jae;Kim, Kyung-Min;Park, Seung-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.647-648
    • /
    • 2006
  • In this paper, magnetic levitation characteristics of hybrid magnets are experimentally shown under the newly proposed airgap condition. The digital PID controller is utilized to control the airgap of the magnetic levitation system.

  • PDF

Study of a Temperature Control Method of Vaccine Storage-Box with PIC (PIC를 이용한 백신 보관고의 온도제어 기법에 관한 연구)

  • Yoon, Hyung-Sang;Cha, In-Su;Yang, Gi-Ok
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.145-149
    • /
    • 2001
  • This paper did so that may can establish optimum temperature according to kind of vaccine and digitalized various action situations using PIC 16C74A-04A/SP. Also, PID Algorithm Controller designed to maintain optimum temperature using PIC. Begin to operating system after temperature setting, reached in optimum storage temperature within 30 minutes.

  • PDF

An Implementation of the Controller for Multiple DC Motors Using CAN (CAN 통신을 이용한 다중 직류 모터 제어기 구현)

  • Kim, Hyun-Sung;Kwon, Man-Oh;Yi, Keon-Young
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.583-585
    • /
    • 1999
  • This paper presents the controller of multiple DC motors using the network. This controller has been built with 16-bits one chip microprocessor (87C196CA) which includes the integrated CAN serial communication and position control for two motors. Since only one microprocessor is needed, the proposed controller is not only cost effective but also powerful. The system is composed of one main controller, trajectory planner, and the other sub controller, position controller. The main controller which has been built using Visual Basic programming on the Pentium PC, generates the trajectory and then transmits it to the sub controller. The trajectory transmitted from the PC will be processed by the sub controller. Two motors are controlled using the conventional position control, PID, to reach them the same target position but with different velocities at the same time. The communications between the main controller and sub controller is performed through the RS-232 or the CAN communication The CAN would be safer and faster than serial communication network since it has non-destructive bitwise arbitration specification. In this paper, we consider the CAN communications generally and then show the usefulness of the proposed controller by demonstrating position control of two DC motors.

  • PDF

Design of a Hybrid Controller to Eliminate the Force Ripple in the Linear Motor (선형 모터에서 힘리플 제거를 위한 Hybrid 제어기의 설계)

  • Kim, Kyong-Chon;Kim, Jung-Jae;Choi, Young-Man;Gweon, Dae-Gab
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.1
    • /
    • pp.17-22
    • /
    • 2008
  • The proposed hybrid controller consists of PID controller, feedforward controller and RLSE (Recursive Least Square Estimating) adaptive controller to compensate the force ripple that is periodic function of position in a linear motor. The modeling of force ripple is divided into the current-dependent and current-independent components. The current independent components never change as the current into the linear motor changes. On the other hand, the current-dependent components change as current varies when the velocity and load of the linear motor change. The proposed controller can compensate both force ripples. The feedforward controller compensates the current-independent components and the RLSE adaptive controller compensates the current-dependents components. We verified the performance of the controller by simulation and experiments.

  • PDF

System Identification and Pitch Control of a Planing Hull Ship with a Controllable Stern Intercepter (능동제어가 가능한 선미 인터셉터가 부착된 활주선형 선박의 시스템 식별과 자세 제어에 관한 연구)

  • Choi, Hujae;Park, Jongyong;Kim, Dongjin;Kim, Sunyoung;Lee, Jooho;Ahn, Jinhyeong;Kim, Nakwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.5
    • /
    • pp.401-414
    • /
    • 2018
  • Planing hull type ships are often equipped with interceptor or trim tab to improve the excessive trim angle which leads to poor resistance and sea keeping performances. The purpose of this study is to design a controller to control the attitude of the ship by controllable stern interceptor and validate the effectiveness of the attitude control by the towing tank test. Embedded controller, servo motor and controllable stern interceptor system were equipped with planing hull type model ship. Prior to designing the control algorithm, a model test was performed to identify the system dynamic model of the planing hull type ship including the stern interceptor. The matrix components of model were optimized by Genetic Algorithm. Using the identified model, PID controller which is a classical controller and sliding mode controller which is a nonlinear robust controller were designed. Gain tuning of the controllers and running simulation was conducted before the towing tank test. Inserting the designed control algorithm into the embedded controller of the model ship, the effectiveness of the active control of the stern interceptor was validated by towing tank test. In still water test with small disturbance, the sliding mode controller showed better performance of canceling the disturbance and the steady-state control performance than the PID controller.

Design of Guidance and Control Algorithm for Autolanding In Windshear Environment Using Fuzzy Gain Scheduling (퍼지 게인스케듈링을 적용한 자동착륙 유도제어 알고리즘 설계 : 윈쉬어 환경에서의 착륙)

  • Ha, Cheol-Keun;Ahn, Sang-Woon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.1
    • /
    • pp.95-103
    • /
    • 2008
  • This paper deals with the problem of autolanding for aircraft under windshear environment for which the landing trajectory is given. It is well known that the landing maneuver in windshear turbulence is very dangerous and hard for the pilot to control because windshear is unpredictable in when and where it happens and its aerodynamic characteristics are complicated. In order to accomplish satisfactory autolanding maneuver in this environment, we propose a gain-scheduled controller. The proposed controller consists of three parts: PID controller, called baseline controller, which is designed to satisfy requirements of stability and performance without considering windshear, gain scheduler based on fuzzy logic, and safety decision logic, which decides if the current autolanding maneuver needs to be aborted or not. The controller is applied to a 6-DOF simulation model of the associated airplane in order to illustrate the effectiveness of the proposed control algorithm. It is noted that a cross wind in the lateral direction is included to the simulation model. From the simulation results it is observed that the proposed gain scheduled controller shows superior performance than the case of controller without gain scheduling even in severe downburst and tailwind region of windshear. In addition, touchdown along centerline of the runway is more precise for the proposed controller than for the controller without gain scheduling in the cross wind and the tailwind.

Study on Vehicle Deceleration Control in School Zones by Taking Driver's Comfort into Account (스쿨 존에서 운전자의 승차감을 수반한 차량 감속 제어에 관한 연구)

  • Cho, Hyo-Seung;Kim, Hyoung-Seok;Lee, Byung-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1359-1366
    • /
    • 2010
  • Recently, many electronic control techniques for vehicles have been developed and applied. One of the technologies can be X-by-wire such as throttle-by-wire, brake-by-wire, steer-by-wire, and etc, in which most of mechanical parts are replaced into electrical wire and actuators. In this study, the effect of throttle-by-wire and brake-by-wire control systems on vehicle velocity control, especially in a school zone, are taken into consideration. The number of accidents reported in school zones is higher than that in other places. The reason for this is that many vehicle drivers do not obey speed limit regulations. Moreover, some of the students are careless while crossing the streets. Therefore, in this study, we attempt to develop a method using throttle-by-wire and brake-by-wire control systems for automatically reducing the vehicle speed such that it will be within the speed limit. First, an engine model and a transmission system model are developed for a specific vehicle model. Second, speed reduction is carried out such that the reduction follows a pre-designed cubic spline trajectory; the trajectory is determined such that rapid deceleration, which causes discomfort to the driver and passengers, can be prevented, for which a fuzzy-PID control algorithm is applied for the trajectory following control. Finally, simulation results are presented to verify the performance of the proposed speed reduction control system.