• Title/Summary/Keyword: PID control gain

Search Result 268, Processing Time 0.022 seconds

Theoretical Analysis of Fast Gain-Transient Recovery of EDFAs Adopting a Disturbance Observer with PiD Controller in WDM Network

  • Kim, Sung-Chul;Shin, Seo-Yong;Song, Sung-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.153-157
    • /
    • 2007
  • We have proposed an application of disturbance observer with PID controller to minimize gain-transient time of wavelength-division-multiplexing(WDM) multi channels in optical amplifier in channel add/drop networks. We have dramatically reduced the gain-transient time to less than $3{\mu}sec$ by applying a disturbance observer with a proportional/integral/ differential(PID) controller to the control of amplifier gain. The theoretical analysis on the 3-level erbium-doped fiber laser and the disturbance observer technique is demonstrated by performing the simulation with co-simulation of the $MATLAB^{TM}$ and a numerical modeling software package such as the $Optsim^{TM}$.

Turbojet Engine Control of UAV using Artificial Neural Network PID (인공신경망 PID를 이용한 무인항공기 터보제트 엔진 제어)

  • Kim, Dae-Gi;Hong, Gyo-Young;Ahn, Dong-Man;Hong, Seung-Beom;Jie, Min-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.2
    • /
    • pp.107-113
    • /
    • 2014
  • In this paper, controller Propose to prevent compressor surge and improve the transient response of the fuel flow control system of turbojet engine. Turbojet engine controller is designed by applying Artificial Neural Network PID control algorithm and make an inference by applying Artificial Neural Network Error Back Propagation Algorithm. To prevent any surge or a flame out event during the engine acceleration or deceleration, the ANN PID controller effectively controls the fuel flow input of the control system. ANN PID results are used as the fuel flow control inputs to prevent compressor surge and flame-out for turbo-jet engine and the controller is designed to converge to the desired speed quickly and safely. Using MATLAB to perform computer simulations verified the performance of the proposed controller. Response characteristics pursuant to the gain were analyzed by simulation.

Path Following Control of Mobile Robot Using Lyapunov Techniques and PID Cntroller

  • Jin, Tae-Seok;Tack, Han-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.1
    • /
    • pp.49-53
    • /
    • 2011
  • Path following of the mobile robot is one research hot for the mobile robot navigation. For the control system of the wheeled mobile robot(WMR) being in nonhonolomic system and the complex relations among the control parameters, it is difficult to solve the problem based on traditional mathematics model. In this paper, we presents a simple and effective way of implementing an adaptive following controller based on the PID for mobile robot path following. The method uses a non-linear model of mobile robot kinematics and thus allows an accurate prediction of the future trajectories. The proposed controller has a parallel structure that consists of PID controller with a fixed gain. The control law is constructed on the basis of Lyapunov stability theory. Computer simulation for a differentially driven nonholonomic mobile robot is carried out in the velocity and orientation tracking control of the nonholonomic WMR. The simulation results of wheel type mobile robot platform are given to show the effectiveness of the proposed algorithm.

Control of Magnetic Bearing using ATmega128(Focused on experiments) (ATmega128 소자를 이용한 자기베어링 제어(실험을 중심으로))

  • Yang, Joo-Ho;Choi, Gyo-Ho;Choung, Kwang-Gyo
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.139-146
    • /
    • 2013
  • Because the magnetic bearing supports levitating body without contact, wear, noise and vibration, it is very useful to high revolution machinery. In this paper we selected ATmega 128, a less expensive and widely used micro controller, for control the magnetic bearing system. And we selected the sampling time and the control gain of PID controller through trial-and-error. The control program of the one board controller utilized lookup table to reduce calculation time, and bit shifting for the integer calculation in instead of floating point calculation. As the results, the controller carried out relatively high speed PID control on sampling time 0.25 ms. At last the rotation test for the magnetic bearing system was carried out by 3 phase induction motor and air turbine.

PID $\times$ (n-1) Stage PD Controller for SISO Systems

  • Prasit, Julseeewong;Prapart, Ukakimaparn;Thanit, Trisuwannawat;Anuchit, Jaruvanawat;Kitti, Tirasesth
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.407-412
    • /
    • 1998
  • A design technique based on the root locus approach for the SISO (Single-Input Single-Output) systems using PID (Proportional-Integral-Derivative) ${\times}$ (n-1) stage PD as a controller for the n$\^$th/ order plant is presented. The controller is designed based on transient and steady state response specifications. This controller can be used instead of a conventional PID controller. The overall system is approximated as a stable and robust second order system. The desired performances are achieved by increase the gain of the controller. In addition, the controller gain can be adjusted to obtain faster response with a little overshoot. The simulation results show the merits of this approach.

  • PDF

Design of robust iterative learning controller for linear plant with initial error and time-delay (초기 오차와 시간 지연을 고려한 선형 플랜트에 대한 강인한 반복 학습 제어기의 설계)

  • 박광현;변증남;황동환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.335-338
    • /
    • 1996
  • In this paper, we are going to design an iterative learning controller with the robust properties for initial error. For this purpose, the PID-type learning law will be considered and the design guide-line will be presented for the selection of the learning gain. Also, we are going to suggest a condition for the convergence of control input for a plant with input delay. Several simulation results are presented, which shows the effectiveness of the proposed algorithms.

  • PDF

Inverted Pendulum 제어를 위한 새로운 하이브리드 퍼지게인스케쥴링 제어기의 설계

  • 정병태;박재삼
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1997.03a
    • /
    • pp.235-246
    • /
    • 1997
  • Hybrid fuzzy gain scheduling controller is composed of a PD control and a fuzzy control for taking the advantage of each scheme. The key structure of the hybrid fuzzy gain scheduling control scheme is so called a switch which calculates weighting values between the fuzzy controller and the PD controller. However, due to the requirement of the switch , the hybrid fuzzy gain scheduling control scheme needs extra fuzzy logic processing, thus the structure is complicated. and requires more calculation time. To eliminate the drawbacks, a new hybrid fuzzy gain scheduling control scheme is proposed in this paper. In the proposed scheme, the membership function, for calculating of weithting value, and the input and output membership functions are combined. Thus the proposed hybrid scheme does not require switch for calculation of weighting value, and as a result, the calculation time is faster and the structure is more simple than the existing hybrid controller. Computer simulation results for an inverted pendulum model under Pole-Placement PID controller, fuzzy gain scheduling controller,existing hybrid controller , and proposed hybrid controller are compared to demonstrate the good property of the proposed hybrid controller.

Development of GUI-program for Auto-tuning PID controller using relay feedback and Application of level-temperature plant (릴레이 궤환을 이용한 자동동조 PID 제어기의 GUI-Program 개발과 수위온도제어 플랜트에의 실시간 적용)

  • Yoo, Byong-Chul;Han, Jin-Wook;Lee, Chang-Goo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.609-611
    • /
    • 1999
  • The purpose of this research is on figuring out the optimal PID parameter using critical gain and critical frequency that are obtained by relay feedback. The operating has been done under the condition that the least information about the object plant is given and also the operating is processed within the limit which dose not give rise to bad influence on the object plant. For simulation auto-tuning PID controller using relay feedback which also works on on-line at the same time is developed by the upper procedure. This algorithm is tried to apply to level-temperature control plant on a real time with PC Interface Card.

  • PDF

Improvement in Control Performance of a Servo System Compensating Bandwidth Variations at Low Speed

  • Ji, Young-Eun;Park, Je-Wook;Hwang, Seon-Hwan;Baek, Kwang-Ryul;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.382-387
    • /
    • 2010
  • This paper presents a novel design method for determining the PID gains of a speed controller for a servo system compensating variations in bandwidth at a low speed. The variations in bandwidth of a speed controller are measured at a low speed and the relationship between the bandwidth and the damping ratio are verified by determining the location of the closed loop pole. The proposed algorithm uses the z-transform of a plant and speed controller and applies the time-varying sampling method for determining the PID gains of the speed controller at low speed. The magnitude and the phase condition are considered for finding a suitable control gain. The usefulness and effectiveness of the proposed method is demonstrated through experimental results such as low speed control and robust disturbance responses.

GA-BASED PID AND FUZZY LOGIC CONTROL FOR ACTIVE VEHICLE SUSPENSION SYSTEM

  • Feng, J.-Z.;Li, J.;Yu, F.
    • International Journal of Automotive Technology
    • /
    • v.4 no.4
    • /
    • pp.181-191
    • /
    • 2003
  • Since the nonlinearity and uncertainties which inherently exist in vehicle system need to be considered in active suspension control law design, this paper proposes a new control strategy for active vehicle suspension systems by using a combined control scheme, i.e., respectively using a genetic algorithm (GA) based self-tuning PID controller and a fuzzy logic controller in two loops. In the control scheme, the PID controller is used to minimize vehicle body vertical acceleration, the fuzzy logic controller is to minimize pitch acceleration and meanwhile to attenuate vehicle body vertical acceleration further by tuning weighting factors. In order to improve the adaptability to the changes of plant parameters, based on the defined objectives, a genetic algorithm is introduced to tune the parameters of PID controller, the scaling factors, the gain values and the membership functions of fuzzy logic controller on-line. Taking a four degree-of-freedom nonlinear vehicle model as example, the proposed control scheme is applied and the simulations are carried out in different road disturbance input conditions. Simulation results show that the present control scheme is very effective in reducing peak values of vehicle body accelerations, especially within the most sensitive frequency range of human response, and in attenuating the excessive dynamic tire load to enhance road holding performance. The stability and adaptability are also showed even when the system is subject to severe road conditions, such as a pothole, an obstacle or a step input. Compared with conventional passive suspensions and the active vehicle suspension systems by using, e.g., linear fuzzy logic control, the combined PID and fuzzy control without parameters self-tuning, the new proposed control system with GA-based self-learning ability can improve vehicle ride comfort performance significantly and offer better system robustness.