• Title/Summary/Keyword: PID제어

Search Result 1,851, Processing Time 0.04 seconds

Optimal Auto-tuning Algorithm for Hybrid Fuzzy PID Controller (하이브리드 퍼지 PID 제어기의 최적 자동동조 알고리즘)

  • Jeong, Byoung-Jo;Oh, Sung-Kwun;Jang, Sung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2114-2116
    • /
    • 2002
  • 본 논문은 개선된 Complex 방법을 이용한 하이브리드 퍼지 PID 제어기의 최적 자동동조 알고리즘을 제안한다. 제어응답은 퍼지제어기의 환산계수 값에 의해 여러 종류, 여러 형태로 변화하기 때문에 해당하는 제어계의 평가 기준을 만족하도록 제어 파라미터 값을 정하는 것이 중요하다. PID 파라미터 조정법에는 많은 방법이 제안되어 왔었다. 대표적인 예로서 Ziegler-Nichols, Cohen-Coon, Chien-Hrones-Reswick(CHR) 등에 의해 제안된 방법들이 있다. 본 논문에서는 개선된 Complex 방법을 이용한 강력한 자동동조 알고리즘이 하이브리드 퍼지 PID 제어기의 성능을 자동적으로 개선하기 위해 사용된다. 이 알고리즘은 하이브리드 퍼지 PID 파라미터와 환산계수를 제어출력 변화율과 제한조건에 따라 자동으로 추정한다. 지연시간을 갖는 1계, 2계 공정에 적용하고. 공정출력 기준치는 단위 입력으로 한다. 제어 결과의 성능평가를 위해 ITAE(Integral of Time multiplied by the Absolute value of Error)가 사용되며, 또한 제어기의 오버슈트도 토의된다.

  • PDF

A tuning method for robust PID controller (강인 PID 제어기 설계)

  • 윤상준;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.585-588
    • /
    • 1996
  • The conventional output feedback robust control designs are very useful for systems under parameter perturbation and uncertain disturbance. However these designs are very complicated and not easily implemented for industrial applications. So, this paper proposes a robust PID controller design method via genetic searching algorithm.

  • PDF

A Study on the Programming/Application of PID Control Modules of a PLC (PLC의 PID제어 모듈의 프로그래밍 및 적용에 관한 연구)

  • 조도현;이창희;이상훈
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.4
    • /
    • pp.425-434
    • /
    • 2001
  • In this paper, a series of processes to configure a feedback control system by using a PID controller in a programmable logic controller (PLC). The PLC (SIMATIC S7-400) with a PID module (FM455C) is connected by online to an IBM PC with the Windows environment, which serves as a PLC programmer. PID controllers including P/PD/PI controllers have been designed in order to show design procedures, and finally, a PID controller for the plant of cart system. Performances of the control system have been investigated by the MATLAB simulation, the simulation in the PLC programmer. Physical performances have been recorded and examined for the real cart system.

  • PDF

A controller Design using Immune Feedback Mechanism (인체 면역 피드백 메카니즘을 활용한 제어기 설계)

  • Park, Jin-Hyun;Kim, Hyun-Duck;Choi, Young-Kiu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.701-704
    • /
    • 2005
  • PID controllers, which have been widely used in industry, have a simple structure and robustness to modeling error. But They are difficult to have uniformly good control performance in system parameters variation or different velocity command. In this paper, we propose a nonlinear adaptive PID controller based on a cell-mediated immune response and a gradient descent learning. This algorithm has a simple structure and robustness to system parameters variation. To verify performances of the proposed nonlinear adaptive PID controller, the speed control of nonlinear DC motor is performed. The simulation results show that the proposed control systems are effective in tracking a command velocity under system parameters variation.

  • PDF

Temperature control of the Rework-system using fuzzy PID controller (퍼지 PID 제어기에 의한 리워크 시스템의 온도제어)

  • Oh, Kabsuk;Kang, Geuntaek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.6289-6295
    • /
    • 2014
  • Rework systems are the equipment used to install or remove semiconductor chips with BGA or SMD forms in printed circuit boards. The rework systems have hot air outlets. At the outlets, precise temperature control is needed to avoid heat shock. The aim of this paper was to suggest a new controller for temperature control at the hot air outlets. The suggested controller was a fuzzy PID controller. The fuzzy PID controllers were composed of TSK fuzzy rules and had outstanding ability for nonlinear systems control. This paper reports the design algorithm of fuzzy PID controllers, and the design process of the fuzzy PID controller for the temperature control of the outlets. Temperature control experiments were performed to verify the ability of the suggested controller. As a result, the RMS of the proposed method is 9.44 and the general method is 15.88. The experiments showed that the temperatures at the outlet using the suggested fuzzy PID controller followed the desired ones better than the commonly used PID controller.

An Adaptive PID Controller Design based on a Gradient Descent Learning (경사 감소 학습에 기초한 적응 PID 제어기 설계)

  • Park Jin-Hyun;Kim Hyun-Duck;Choi Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.276-282
    • /
    • 2006
  • PID controller has been widely used in industry. Because it has a simple structure and robustness to modeling error. But it is difficult to have uniformly good control performance in system parameters variation or different velocity command. In this paper, we propose an adaptive PID controller based on a gradient descent learning. This algorithm has a simple structure like conventional PID controller and a robustness to system parameters variation and different velocity command. To verify performances of the proposed adaptive PID controller, the speed control of nonlinear DC motor is performed. The simulation results show that the proposed control systems are effective in tracking a command velocity under system parameters variation.

Simulation for Intelligent Cruise Control of vehicle using Fuzzy-PID Controller (Fuzzy-PID 제어기를 이용한 차량의 정속주행 시뮬레이션)

  • 임영도;김승철;박재형
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.4
    • /
    • pp.603-610
    • /
    • 1998
  • The purpose of this paper is to describe how the characteristics of the movement of cars can be modeled with computers. For this, we use Matlab and simulate the characteristics of the cruise-speed at which the car is driven using the Fuzzy PID controller. The model of the car is designed by M-S(Matlab-Simulink) and each parameter of PID is estimated automatically by the Fuzzy controller. The simulation of the car is carried out on straight base tracks, and then this is compared and analyzed with the simple Fuzzy controller and the simple PID controller.

  • PDF

A Design PID Controller by Neural Network algorithm with Momentum term in Position control system (위치제어계에서 모먼텀 항을 갖는 신경망 알고리듬 의한 PID 제어기 설계)

  • 박광현;허진영;하홍곤
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.380-385
    • /
    • 2001
  • In this paper, in order to get rid of danger trapped Local minimum point, disadvantage of General Back-propagation and simultaneously obtain fast teaming-speed. We propose PID Back-Propagation with Momentum Term(PID-BPMT) and Design PID Controller by Neural Network with Momentum term. Consider to apply for that Controller in position control system by driven D.C servo motor. its useful performance is verified by computer simulation

  • PDF

Neural Network PID control method for robust disturbance (외란에 강인한 신경망 PID 제어방식)

  • 김영렬;이정훈;강성호;임성진;정성부;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.945-948
    • /
    • 2003
  • In this paper, we propose a robust PID control method with neural network to minimize the influence of the disturbance to happen in the system. The proposed method, the neural network filters out the disturbance of control system. The plant input which a disturbance is included is compensated to the output of neural network and the plant is controlled only PID controller. Through the DC motor control simulation and MM-LDM position control experiment, we could confirm the proposed method is robust at the disturbance in control system.

  • PDF

Gimbal System Control for Drone for 3D Image (입체영상 촬영을 위한 드론용 짐벌시스템 제어)

  • Kim, Min;Byun, Gi-Sig;Kim, Gwan-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2107-2112
    • /
    • 2016
  • This paper is designed to develop a Gimbal control stabilizer for drones Gimbal system control for drone for 3D image to make sure clean image in the shaking and wavering environments of drone system. The stabilizer is made of tools which support camera modules and IMU(Inertial Measurement Unit) sensor modules follow exact angles, which can brock vibrations outside of the camera modules. It is difficult for the camera modules to get clean image, because of irregular movements and various vibrations produced by flying drones. Moreover, a general PID controller used for the movements of rolling, pitching and yawing in order to control the various vibrations of various frequencies needs often to readjust PID control parameters. Therefore, this paper aims to conduct the Intelligent-PID controller as well as design the Gimbal control stabilizer to get clean images and to improve irregular movements and various vibrations problems referenced above.