• Title/Summary/Keyword: PIC structure

Search Result 80, Processing Time 0.03 seconds

Studies on the Construction of Mutant Diversity Pool (MDP) lines, and their Genomic Characterization in Soybean

  • Dong-Gun Kim;Sang Hoon Kim;Chang-Hyu Bae;Soon-Jae Kwon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.9-9
    • /
    • 2021
  • Mutation breeding is useful for improving agronomic characteristics of various crops. In this study, we constructed soybean Mutant Diversity Pool (MDP) from 1,695 gamma-irradiated mutants through two selection phases over M1 to M12 generations; we selected 523 mutant lines exhibiting at least 30% superior agricultural characteristics, and, second, we eliminated redundant morphological phenotypes in the M12 generation. Finally, we constructed 208 MDP lines and investigated 11 agronomic traits. We then assessed the genetic diversity and inter-relationships of these MDP lines using target region amplification polymorphism (TRAP) markers. Among the different TRAP primer combinations, polymorphism levels and PIC values averaged 59.71% and 0.15, respectively. Dendrogram and population structure analyses divided the MDP lines into four major groups. According to an analysis of AMOVA, the percentage of inter-population variation among mutants was 11.320 (20.6%), whereas mutant inter-population variation ranged from 0.231 (0.4%) to 14.324 (26.1%). Overall, the genetic similarity of each cultivar and its mutants were higher than within other mutant populations. In an analysis of the genome-wide association study (GWAS) using based on the genotyping-by-sequencing (GBS), we detected 66 SNPs located on 13 different chromosomes were found to be highly associated with four agronomic traits: days of flowering (33 SNPs), flower color (16 SNPs), node number (6 SNPs), and seed coat color (11 SNPs). These results are consistent with those previously reported for other genetic resource populations, including natural accessions and recombinant inbred line. Our observations suggest that genomic changes in mutant individuals induced by gamma rays occurred at the same loci as those of natural soybean population. This study has demonstrated that the integration of GBS and GWAS can serve as a powerful complementary approach to gamma-ray mutation for the dissection of complex traits in soybean.

  • PDF

Estimating genetic diversity and population structure of 22 chicken breeds in Asia using microsatellite markers

  • Roh, Hee-Jong;Kim, Seung-Chang;Cho, Chang-Yeon;Lee, Jinwook;Jeon, Dayeon;Kim, Dong-kyo;Kim, Kwan-Woo;Afrin, Fahmida;Ko, Yeoung-Gyu;Lee, Jun-Heon;Batsaikhan, Solongo;Susanti, Triana;Hegay, Sergey;Kongvongxay, Siton;Gorkhali, Neena Amatya;Thi, Lan Anh Nguyen;Thao, Trinh Thi Thu;Manikku, Lakmalie
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.12
    • /
    • pp.1896-1904
    • /
    • 2020
  • Objective: Estimating the genetic diversity and structures, both within and among chicken breeds, is critical for the identification and conservation of valuable genetic resources. In chickens, microsatellite (MS) marker polymorphisms have previously been widely used to evaluate these distinctions. Our objective was to analyze the genetic diversity and relationships among 22 chicken breeds in Asia based on allelic frequencies. Methods: We used 469 genomic DNA samples from 22 chicken breeds from eight Asian countries (South Korea, KNG, KNB, KNR, KNW, KNY, KNO; Laos, LYO, LCH, LBB, LOU; Indonesia, INK, INS, ING; Vietnam, VTN, VNH; Mongolia, MGN; Kyrgyzstan, KGPS; Nepal, NPS; Sri Lanka, SBC) and three imported breeds (RIR, Rhode Island Red; WLG, White Leghorn; CON, Cornish). Their genetic diversity and phylogenetic relationships were analyzed using 20 MS markers. Results: In total, 193 alleles were observed across all 20 MS markers, and the number of alleles ranged from 3 (MCW0103) to 20 (LEI0192) with a mean of 9.7 overall. The NPS breed had the highest expected heterozygosity (Hexp, 0.718±0.027) and polymorphism information content (PIC, 0.663±0.030). Additionally, the observed heterozygosity (Hobs) was highest in LCH (0.690±0.039), whereas WLG showed the lowest Hexp (0.372±0.055), Hobs (0.384±0.019), and PIC (0.325±0.049). Nei's DA genetic distance was the closest between VTN and VNH (0.086), and farthest between KNG and MGN (0.503). Principal coordinate analysis showed similar results to the phylogenetic analysis, and three axes explained 56.2% of the variance (axis 1, 19.17%; 2, 18.92%; 3, 18.11%). STRUCTURE analysis revealed that the 22 chicken breeds should be divided into 20 clusters, based on the highest ΔK value (46.92). Conclusion: This study provides a basis for future genetic variation studies and the development of conservation strategies for 22 chicken breeds in Asia.

Analysis of Genetic Diversity and Population Structure for Core Set of Waxy and Normal Maize Inbred Lines using SSR Markers (SSR 분자마커를 이용한 찰옥수수 및 종실용 옥수수 자식계통들의 핵심집단에 대한 유전적 다양성 및 집단구조 분석)

  • Sa, Kyu Jin;Kim, Jin-Ah;Park, Ki Jin;Park, Jong Yeol;Goh, Byeong Dae;Lee, Ju Kyong
    • Korean Journal of Breeding Science
    • /
    • v.43 no.5
    • /
    • pp.430-441
    • /
    • 2011
  • Maize is divided into two types based on the starch composition of the endosperm in the seed, normal maize(or non-waxy maize) and waxy maize. In this study, genetic diversity and population structure were investigated among 80 waxy maize and normal inbred lines(40 waxy maize inbred lines and 40 normal maize inbred lines) using 50 SSR markers. A total of 242 alleles were identified at all the loci with an average of 4.84 and a range between 2 and 9 alleles per locus. The gene diversity values varied from 0.420 to 0.854 with an average of 0.654. The PIC values varied from 0.332 to 0.838 with an average of 0.602. To evaluate the population structure, STRUCTURE 2.2 program was employed to confirm genetic structure. The 80 waxy and normal maize inbred lines were separated with based on the membership probability threshold 0.8, and divided into groups I, II and admixed group. The 13 waxy maize inbred lines were assigned to group I. The 45 maize inbred lines including 7 waxy maize inbred lines and 38 normal maize inbred lines were assigned to group II. The 22 maize inbred lines with 20 waxy maize inbred lines and 2 normal maize inbred lines were contained in the admixed group. The cluster tree generated using the described SSR markers recognized three major groups at 31.7% genetic similarity. Group I included 40 waxy maize inbred lines and 11 normal maize inbred lines, and Group II included 27 normal maize inbred lines. Group III consist of only 2 normal maize inbred lines. The present study has demonstrated the utility of SSR analysis for the study of genetic diversity and the population structure among waxy and normal maize inbred lines. The information obtained from the present studies would be very useful for designing efficient maize breeding programs in Maize Experiment Station, Kangwon Agricultural Research and Extension Services.

Forest Structure of the Region from Dongchanggyo to Deogjusa in Woraksan National Park, Korea (월악산국립공원 덕주사-동창교 지역의 산림군집구조)

  • Kim Gab-Tae;Choo Gab-Cheul
    • Korean Journal of Environment and Ecology
    • /
    • v.19 no.2
    • /
    • pp.75-82
    • /
    • 2005
  • To investigate the vegetation structure of the region from Dongchanggyo to Deogjusa in Woraksan National Park, 23 plots$(400m^2)$ set up with random sampling method were surveyed. Three groups Quercus mongolica-pinus densiflora community, Pinus densiflora-Quercus molica community, Mixed Broad-leaved community were classified by cluster analysis. Quercus mongolica, pinus densiflora, Quercus serrata and Fraxinus rhynchophyllai were found as a major woody plant species in Woraksan National Park region. In this area, Quercus mongolica and Pinus densiflora were dominated partially. In the future, the importance percentage of Pinus densiflora might be decreased, but those of Quercus mongolica, Quercus serrata and Fraxinus rhynchophyllai might be increased. High positive correlations were proved between Acer pic tum and Corylus heterophylla, Betula schimidtii; Acer pseudosieboldianum, Cornus controversa ; Stephanandra incisa and Symplocos sawafutagi, Lespedeza maximowixzii ; Symplocos sawafutagi and Fraxinus rhynchophyllai, Lespedeza maximowixzii; Fraxinus rhynchophyllai and Acer pseudosieboldianum, Lespedeza maximowixzii; Quercus variabilis and Fraxinus sieboldiana; Corylus heterophylla, and Rhododendron schlippenbachii; Acer pseudo sieboldianum and Lespedeza maximowixzii, and relatively high negative corrlations was proved between Quercus serrata and Betula schimidtii; Quercus mongolica and Quercus serrata; Corylus heterophylla and Lindera erythrocarpa. Species diversity(H') of investigated groups were ranged from $1.2393\~1.3674$ and it was relatively high compared to those of the ridge area of other national parks.

Atomic Layer Deposition Method for Polymeric Optical Waveguide Fabrication (원자층 증착 방법을 이용한 폴리머 광도파로 제작)

  • Eun-Su Lee;Kwon-Wook Chun;Jinung Jin;Ye-Jun Jung;Min-Cheol Oh
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.4
    • /
    • pp.175-183
    • /
    • 2024
  • Research into optical signal processing using photonic integrated circuits (PICs) has been actively pursued in various fields, including optical communication, optical sensors, and quantum optics. Among the materials used in PIC fabrication, polymers have attracted significant interest due to their unique characteristics. To fabricate polymer-based PICs, establishing an accurate manufacturing process for the cross-sectional structure of an optical waveguide is crucial. For stable device performance and high yield in mass production, a process with high reproducibility and a wide tolerance for variation is necessary. This study proposes an efficient method for fabricating polymer optical-waveguide devices by introducing the atomic layer deposition (ALD) process. Compared to conventional photoresist or metal-film deposition methods, the ALD process enables more precise fabrication of the optical waveguide's core structure. Polyimide optical waveguides with a core size of 1.8 × 1.6 ㎛2 are fabricated using the ALD process, and their propagation losses are measured. Additionally, a multimode interference (MMI) optical-waveguide power-splitter device is fabricated and characterized. Throughout the fabrication, no cracking issues are observed in the etching-mask layer, the vertical profiles of the waveguide patterns are excellent, and the propagation loss is below 1.5 dB/cm. These results confirm that the ALD process is a suitable method for the mass production of high-quality polymer photonic devices.

Construction of Genetic Linkage Map using Microsatellite and SNP Markers in Korean Native Chicken (Microsatellite와 SNP Marker를 이용한 한국재래닭의 유전적 연관지도 작성)

  • Seo, Dong Won;Park, Hee Bok;Choi, Nu Ri;Jin, Shil;Yoo, Chae Kyoung;Sultana, Hasina;Heo, Kang Nyeong;Jo, Cheorun;Lee, Jun Heon
    • Korean Journal of Poultry Science
    • /
    • v.42 no.1
    • /
    • pp.77-86
    • /
    • 2015
  • Chicken is one of the major livestock, especially for supplying proteins to human. The chicken genome size is approximately one-third compared with that of the human genome and regarded as a valuable model animal for genetics and development biology. In this study, we constructed the genetic linkage map for Korean native chicken (KNC) using 131 microsatellite (MS) and 8 single nucleotide polymorphism (SNP) markers. As a result, the total map length was calculated as 2729.4 cM and the average genetic distance between markers was 19.64 cM. The marker orders and genetic distances were well matched with the consensus linkage map except for the physical order of ADL0278 and MCW0351 in GGA8. In addition, the recombination rates in marcrochromosomes were 3.7 times higher than that of microchromosomes. The average numbers of alleles, expected heterozygosity (Hexp) and polymorphic information content (PIC) values were calculated as 5.5, 0.63 and 0.58, respectively. These results will give useful information for the understanding of genetic structure and QTL studies in KNC.

Studies on Genetic Diversity and Phylogenetic Relationships of Korean Native Chicken using the Microsatellite Marker (Microsatellite Marker를 활용한 한국 토종닭 품종의 유전적 다양성 및 유연관계 분석)

  • Seo, Joo Hee;Oh, Jea-Don;Lee, Jun-Heon;Seo, Dongwon;Kong, Hong Sik
    • Korean Journal of Poultry Science
    • /
    • v.42 no.1
    • /
    • pp.15-26
    • /
    • 2015
  • In this study, genotyping was executed by using 27 microsatellite markers for genetic diversity of 469 Korean Native Chickens [20 population, each population is 24 samples but Hanhyup A line is 13 samples). in total 469 samples were collected from National Institute of Animal Science (Korean Native Chicken (NR, NY, NG, NL and NW), Ogye (NO), Leghorn F,K (NF and NK), Black and Brown cormish (NH and NS), Rhode Island Red C, D (NC and ND), Total is 12 populations] and Hanhyup [H line (HH), F line (HF), G line (HG), V line (HV), S line (HS), W line (HW), Y line (HY), A line (HA), total is 8 populations]. [The allele number were observed 5 (ADL0268) to 20 (MCW0127) each markers. Observed heterozygostiy ($H_{obs}$), expected heterozygosity ($H_{exp}$), polymorphism Information Content (PIC) were observed 0.359 to 0.677, 0.668 to 0.881 and 0.646 to 0.869, respectively. Using these markers, the calculated the heterozygote deficit within chicken line ($F_{is}$) value each population from mean 0.117. Phylogenetic tree showing the genetic relationship among 20 population using standard genetic distance calculated from 27 microsatellite markers. genetic distances revealed the closest (0.175) between NC and ND. on the other hand, Farthest genetic distances (0.710) revealed between NF and HV. STRUCTURE analysis and Principal Components Analysis (PCA) showed that results of similar phylogenetic tree. The expected probability of identity values on random individuals (Total population and only Hanhyup line) was estimated at $8.80{\times}10^{-83}$ and $3.87{\times}10^{-117}$, respectively. In conclusion, This study shows the useful data that be utilized as a basic data of Korean Native Chicken breeding and development for commercial chicken industry to meet the consumer's demand.

Analysis of Genetic Characteristics and Probability of Individual Discrimination in Korean Indigenous Chicken Brands by Microsatellite Marker (MS 마커를 이용한 토종닭 브랜드의 유전적 특성 및 개체 식별력 분석)

  • Suh, Sangwon;Cho, Chang-Yeon;Kim, Jae-Hwan;Choi, Seong-Bok;Kim, Young-Sin;Kim, Hyun;Seong, Hwan-Hoo;Lim, Hyun-Tae;Cho, Jae-Hyeon;Ko, Yeoung-Gyu
    • Journal of Animal Science and Technology
    • /
    • v.55 no.3
    • /
    • pp.185-194
    • /
    • 2013
  • Microsatellite markers have been a useful genetic tool in determining diversity, relationships and individual discrimination studies of livestock. The level of genetic diversity, relationships among two Korean indigenous chicken brand populations (Woorimatdag: WR, Hanhyup3: HH) as well as two pure populations (White Leghorn: WL, Rhode Island Red: RIR) were analyzed, based on 26 MS markers. A total of 191 distinct alleles were observed across the four chicken populations, and 47 (24.6%) of these alleles were unique to only one population. The mean $H_{Exp}$ and PIC were estimated as 0.667 and 0.630. Nei's $D_A$ genetic distance and factorial correspondence analysis (FCA) showed that the four populations represented four distinct groups. However, the genetic distance between each Korean indigenous chicken brand (WR, HH) and the pure population (WL, RIR) were threefold that among the WR and HH. For the STRUCTURE analyses, the most appropriate number of clusters for modeling the data was determined to be three. The expected probabilities of identity among genotypes of random individuals (PI) were calculated as $1.17{\times}10^{-49}$ (All 26 markers) and $1.14{\times}10^{-15}$, $7.33{\times}10^{-20}$ (9, 12 with the highest PI value, respectively). The results indicated that the brand chicken breed traceability system employing the own highest PI value 9 to 12 markers, and might be applicable to individual identification of Korean indigenous chicken brand.

Analysis of Genetic Diversity and Relationships of Korean Native Goat Populations by Microsatellite Markers (MS 표지를 이용한 한국재래염소 집단의 유전적 다양성 및 유연관계 분석)

  • Suh, Sangwon;Byun, Mijeong;Kim, Young-Sin;Kim, Myung-Jick;Choi, Seong-Bok;Ko, Yeoung-Gyu;Kim, Dong-Hun;Lim, Hyun-Tae;Kim, Jae-Hwan
    • Journal of Life Science
    • /
    • v.22 no.11
    • /
    • pp.1493-1499
    • /
    • 2012
  • The level of genetic variation and relationships in three native Korean goat populations (Dangjin, Jangsu, and Tongyeong) as well as the populations of a farm were analyzed, based on 30 microsatellite markers. A total of 277 distinct alleles were observed across the four goat populations, and 102 (36.8%) of these alleles were unique to only one population. The mean observed heterozygosity and polymorphism information content were calculated as 0.461~0.651 and 0.462~0.679, respectively. In the NJ tree constructed based on Nei's $D_A$ genetic distance, the four populations represented four distinct groups. However, the genetic distances between each Korean native goat population and the farm population were two times those among the three native Korean breeds. The genetic structure within the three Korean native goat populations was also investigated. Cluster analysis, using the STRUCTURE software, suggested three clusters. The molecular information of genetic diversity and relationships in this study will be useful for the evaluation, conservation, and utilization of native Korean goat breeds as genetic resources.

Visualizing the Results of Opinion Mining from Social Media Contents: Case Study of a Noodle Company (소셜미디어 콘텐츠의 오피니언 마이닝결과 시각화: N라면 사례 분석 연구)

  • Kim, Yoosin;Kwon, Do Young;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.89-105
    • /
    • 2014
  • After emergence of Internet, social media with highly interactive Web 2.0 applications has provided very user friendly means for consumers and companies to communicate with each other. Users have routinely published contents involving their opinions and interests in social media such as blogs, forums, chatting rooms, and discussion boards, and the contents are released real-time in the Internet. For that reason, many researchers and marketers regard social media contents as the source of information for business analytics to develop business insights, and many studies have reported results on mining business intelligence from Social media content. In particular, opinion mining and sentiment analysis, as a technique to extract, classify, understand, and assess the opinions implicit in text contents, are frequently applied into social media content analysis because it emphasizes determining sentiment polarity and extracting authors' opinions. A number of frameworks, methods, techniques and tools have been presented by these researchers. However, we have found some weaknesses from their methods which are often technically complicated and are not sufficiently user-friendly for helping business decisions and planning. In this study, we attempted to formulate a more comprehensive and practical approach to conduct opinion mining with visual deliverables. First, we described the entire cycle of practical opinion mining using Social media content from the initial data gathering stage to the final presentation session. Our proposed approach to opinion mining consists of four phases: collecting, qualifying, analyzing, and visualizing. In the first phase, analysts have to choose target social media. Each target media requires different ways for analysts to gain access. There are open-API, searching tools, DB2DB interface, purchasing contents, and so son. Second phase is pre-processing to generate useful materials for meaningful analysis. If we do not remove garbage data, results of social media analysis will not provide meaningful and useful business insights. To clean social media data, natural language processing techniques should be applied. The next step is the opinion mining phase where the cleansed social media content set is to be analyzed. The qualified data set includes not only user-generated contents but also content identification information such as creation date, author name, user id, content id, hit counts, review or reply, favorite, etc. Depending on the purpose of the analysis, researchers or data analysts can select a suitable mining tool. Topic extraction and buzz analysis are usually related to market trends analysis, while sentiment analysis is utilized to conduct reputation analysis. There are also various applications, such as stock prediction, product recommendation, sales forecasting, and so on. The last phase is visualization and presentation of analysis results. The major focus and purpose of this phase are to explain results of analysis and help users to comprehend its meaning. Therefore, to the extent possible, deliverables from this phase should be made simple, clear and easy to understand, rather than complex and flashy. To illustrate our approach, we conducted a case study on a leading Korean instant noodle company. We targeted the leading company, NS Food, with 66.5% of market share; the firm has kept No. 1 position in the Korean "Ramen" business for several decades. We collected a total of 11,869 pieces of contents including blogs, forum contents and news articles. After collecting social media content data, we generated instant noodle business specific language resources for data manipulation and analysis using natural language processing. In addition, we tried to classify contents in more detail categories such as marketing features, environment, reputation, etc. In those phase, we used free ware software programs such as TM, KoNLP, ggplot2 and plyr packages in R project. As the result, we presented several useful visualization outputs like domain specific lexicons, volume and sentiment graphs, topic word cloud, heat maps, valence tree map, and other visualized images to provide vivid, full-colored examples using open library software packages of the R project. Business actors can quickly detect areas by a swift glance that are weak, strong, positive, negative, quiet or loud. Heat map is able to explain movement of sentiment or volume in categories and time matrix which shows density of color on time periods. Valence tree map, one of the most comprehensive and holistic visualization models, should be very helpful for analysts and decision makers to quickly understand the "big picture" business situation with a hierarchical structure since tree-map can present buzz volume and sentiment with a visualized result in a certain period. This case study offers real-world business insights from market sensing which would demonstrate to practical-minded business users how they can use these types of results for timely decision making in response to on-going changes in the market. We believe our approach can provide practical and reliable guide to opinion mining with visualized results that are immediately useful, not just in food industry but in other industries as well.