• Title/Summary/Keyword: PI4P

Search Result 663, Processing Time 0.024 seconds

The Validity Analysis between Measurement Method of Subglottic Air Pressure (성문하압 측정방법의 타당도 분석)

  • Park, Sang-Hee;Jeong, Ok-Ran;Seok, Dong-Il
    • Speech Sciences
    • /
    • v.8 no.3
    • /
    • pp.201-208
    • /
    • 2001
  • The purpose of the study was to examine a method most pertinent to measure subglottic air pressure. Subglottic air pressure and loudness analyses were performed on vowels /a/, /i/ and consonant /p/ in 12 normal subjects using. Aerophone II voice function. The experimental contexts were, therefore, /i:pi:pi:/ and /a:pa:pa:/. The subjects produced the intervocalic /p/ in 4 different situations: 1) /i:pi:pi:/ with voiceless /p/, 2) /i:pi:pi:/ with voiced /p/, 3) /a:pa:pa:/ with voiceless /p/, and 4) /a:pa:pa:/ with voiced /p/. A t-test and a correlation analysis revealed the following results. First, when we measured subglottic air pressure by /i:pi:pi:/, voiceless /p/ was significantly different from voiced /p/. Second, when we measured subglottic air pressure by /a:pa:pa:/, voiceless /p/ was significantly different from voiced /p/. Therefore, it was concluded that voiceless /p/ produced more accurate subglottic air pressure and clinicians needed to have patients produce accurate /p/ when measuring subglottic air pressure using Aerophone II.

  • PDF

Dual Regulation of R-Type CaV2.3 Channels by M1 Muscarinic Receptors

  • Jeong, Jin-Young;Kweon, Hae-Jin;Suh, Byung-Chang
    • Molecules and Cells
    • /
    • v.39 no.4
    • /
    • pp.322-329
    • /
    • 2016
  • Voltage-gated $Ca^{2+}$ ($Ca_V$) channels are dynamically modulated by Gprotein-coupled receptors (GPCR). The $M_1$ muscarinic receptor stimulation is known to enhance $Ca_V2.3$ channel gating through the activation of protein kinase C (PKC). Here, we found that $M_1$ receptors also inhibit $Ca_V2.3$ currents when the channels are fully activated by PKC. In whole-cell configuration, the application of phorbol 12-myristate 13-acetate (PMA), a PKC activator, potentiated $Ca_V2.3$ currents by ~two-fold. After the PMA-induced potentiation, stimulation of $M_1$ receptors decreased the $Ca_V2.3$ currents by $52{\pm}8%$. We examined whether the depletion of phosphatidylinositol 4,5-bisphosphate ($PI(4,5)P_2$) is responsible for the muscarinic suppression of $Ca_V2.3$ currents by using two methods: the Danio rerio voltage-sensing phosphatase (Dr-VSP) system and the rapamycin-induced translocatable pseudojanin (PJ) system. First, dephosphorylation of $PI(4,5)P_2$ to phosphatidylinositol 4-phosphate (PI(4)P) by Dr-VSP significantly suppressed $Ca_V2.3$ currents, by $53{\pm}3%$. Next, dephosphorylation of both PI(4)P and $PI(4,5)P_2$ to PI by PJ translocation further decreased the current by up to $66{\pm}3%$. The results suggest that $Ca_V2.3$ currents are modulated by the $M_1$ receptor in a dual mode-that is, potentiation through the activation of PKC and suppression by the depletion of membrane $PI(4,5)P_2$. Our results also suggest that there is rapid turnover between PI(4)P and $PI(4,5)P_2$ in the plasma membrane.

Phosphate Number and Acyl Chain Length Determine the Subcellular Location and Lateral Mobility of Phosphoinositides

  • Cho, Hana;Kim, Yeon A;Ho, Won-Kyung
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.97-103
    • /
    • 2006
  • Phosphoinositides are critical regulators of ion channel and transporter activity. There are multiple isomers of biologically active phosphoinositides in the plasma membrane and the different lipid species are non-randomly distributed. However, the mechanism by which cells impose selectivity and directionality on lipid movements and so generate a non-random lipid distribution remains unclear. In the present study we investigated which structural elements of phosphoinositides are responsible for their subcellular location and movement. We incubated phosphatidylinositol (PI), phosphatidylinositol 4-monophosphate (PI(4)P) and phosphatidylinositol 4,5-bisphosphate ($PI(4,5)P_2$) with short or long acyl chains in CHO and HEK cells. We show that phosphate number and acyl chain length determine cellular location and translocation movement. In CHO cells, $PI(4,5)P_2$ with a long acyl chain was released into the cytosol easily because of a low partition coefficient whereas long chain PI was released more slowly because of a high partition coefficient. In HEK cells, the cellular location and translocation movement of PI were similar to those of PI in CHO cells, whereas those of $PI(4,5)P_2$ were different; some mechanism restricted the translocation movement of $PI(4,5)P_2$, and this is in good agreement with the extremely low lateral diffusion of $PI(4,5)P_2$. In contrast to the dependence on the number of phosphates of the phospholipid head group of long acyl chain analogs, short acyl chain phospholipids easily undergo translocation movement regardless of cell type and number of phosphates in the lipid headgroup.

Ginsenoside (20S)Rg3 Ameliorates Synaptic and Memory Deficits in an Animal Model of Alzheimer's Disease

  • Kim, Tae-Wan
    • 한국약용작물학회:학술대회논문집
    • /
    • 2011.09a
    • /
    • pp.31-45
    • /
    • 2011
  • The amyloid ${\beta}$-peptide ($A{\beta}$), which originates from the proteolytic cleavage of amyloid precursor protein (APP), plays a central role in the pathogenesis of Alzheimer's disease (AD). Mounting evidence indicates that different species of $A{\beta}$, such as $A{\beta}$ oligomers and fibrils, may contribute to AD pathogenesis via distinct mechanisms at different stages of the disease. Importantly, elevation and accumulation of soluble $A{\beta}$ oligomers closely correlate with cognitive decline and/or disease progression in animal models of AD. In agreement with these studies, oligomers of $A{\beta}$ have been shown to directly affect synaptic plasticity, a neuronal process that is known to be essential for memory formation. Our previous studies showed that $A{\beta}$ induces the breakdown of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a phospholipid that regulates key aspects of neuronal function. PI(4,5)P2 breakdown was found to be a key step toward synaptic and memory dysfunction in a mouse model of AD. To this end, we seek to identify small molecules that could elevate the levels of PI(4,5)P2 and subsequently block $A{\beta}$ oligomer-induced breakdown of PI(4,5)P2 and synaptic dysfunction.. We found that (20S)Rg3, an active triterpene glycoside from heat-processed ginseng, serves as an agonist for phosphatidylinositol 4-kinase IIalpha (PI4KIIalpha), which is a lipid kinase that mediates a rate-limiting step in PI(4,5)P2 synthesis. Consequently, (20S)Rg3 stimulates PI(4,5)P2 synthesis by directly stimulating the activity of PI4KIIalpha. Interestingly, treatment of a mouse model of AD with (20S)Rg3 leads to reversal of memory deficits. Our data suggest that the PI(4,5)P2-promoting effects of (20S)Rg3 may help mitigate the cognitive symptoms associated with AD.

  • PDF

Prostate Imaging-Reporting and Data System: Comparison of the Diagnostic Performance between Version 2.0 and 2.1 for Prostatic Peripheral Zone

  • Hyun Soo Kim;Ghee Young Kwon;Min Je Kim;Sung Yoon Park
    • Korean Journal of Radiology
    • /
    • v.22 no.7
    • /
    • pp.1100-1109
    • /
    • 2021
  • Objective: To compare the diagnostic performance between Prostate Imaging-Reporting and Data System version 2.0 (PI-RADSv2.0) and version 2.1 (PI-RADSv2.1) for clinically significant prostate cancer (csPCa) in the peripheral zone (PZ). Materials and Methods: This retrospective study included 317 patients who underwent multiparametric magnetic resonance imaging and targeted biopsy for PZ lesions. Definition of csPCa was International Society of Urologic Pathology grade ≥ 2 cancer. Area under the curve (AUC), sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy for csPCa were analyzed by two readers. The cancer detection rate (CDR) for csPCa was investigated according to the PI-RADS categories. Results: AUC of PI-RADSv2.1 (0.856 and 0.858 for reader 1 and 2 respectively) was higher than that of PI-RADSv2.0 (0.795 and 0.747 for reader 1 and 2 respectively) (both p < 0.001). Sensitivity, specificity, PPV, NPV, and accuracy for PI-RADSv2.0 vs. PI-RADSv2.1 were 93.2% vs. 88.3% (p = 0.023), 52.8% vs. 76.6% (p < 0.001), 48.7% vs. 64.5% (p < 0.001), 94.2% vs. 93.2% (p = 0.504), and 65.9% vs. 80.4% (p < 0.001) for reader 1, and 96.1% vs. 92.2% (p = 0.046), 34.1% vs. 72.4% (p < 0.001), 41.3% vs. 61.7% (p < 0.001), 94.8% vs. 95.1% (p = 0.869), and 54.3% vs. 78.9% (p < 0.001) for reader 2, respectively. CDRs of PI-RADS categories 1-2, 3, 4, and 5 for PI-RADSv2.0 vs. PI-RADSv2.1 were 5.9% vs. 5.9%, 5.8% vs. 12.5%, 39.8% vs. 56.2%, and 88.9% vs. 88.9% for reader 1; and 4.5% vs. 4.1%, 6.1% vs. 11.1%, 32.5% vs. 53.4%, and 85.0% vs. 86.8% for reader 2, respectively. Conclusion: Our data demonstrated improved AUC, specificity, PPV, accuracy, and CDRs of category 3 or 4 of PI-RADSv2.1, but decreased sensitivity, compared with PI-RADSv2.0, for csPCa in PZ.

Effect of external-phosphorus supply on the phosphorus status of soybean nodules and the P-uptake system of isolated bacteroids (인산공급이 대두근류의 인산형태와 bacteroid의 인산흡수에 미치는 영향)

  • Sa, Tong-Min;Israel, Daniel W.
    • Applied Biological Chemistry
    • /
    • v.34 no.2
    • /
    • pp.117-124
    • /
    • 1991
  • Soybean plants inoculated with Bradyrhizobium japonicum MN 110 were supplied with nutrient solutions containing 1.0, 0.25 and 0.5.nM-P to characterize the effect of externaI-P supply on the phosphorus status of nodules and on the P-uptake system of isolated bacteroids from nodules. After 48 days of growth, whole plant dry mass in the 0.25 and 0.05 mM-P treatments decreased significantly. The Pi concentrations in nodules were 4.1, 2.5 and 2.0 mM for 1.0, 0.25 and 0.05 mM-P treatments, respectively. The external-P supply did not significantly affect the distribution of phosphorus among inorganic phosphate(Pi), soluble organic-phosphorus(SOP) and insoluble organic-phosphorus(TOP) fractions in nodules. The Pi concentrations in young leaves of 0.25 and 0.05 mM-P plants were 33% and 20% , respectively, of those in young leaves of 1.0 mM-P plants and Pi concentrations in old leaves were only 16% and 7%, respectively, of those in old leaves of 1.0 mM-P plants. Phosphorus deficiency decreased the percentage of total leaf phosphorus in the Pi fraction and increased the percentage of total leaf phosphorus in the IOP fraction. The bacteroid number ranged from 0.87 to $1.30{\times}10^{11}$ Per GFW nodule regardless of external-P supply to the host Plants and Plant age, The P-uptake rates were the same (15-16 pmoles /min./$10^8$ bacteroids) for the bacteroids isolated from nodules of 1.0 mM-P and 0.05 mM-P plants. These results indicate that Pi concentrations in nodules of phosphorus-deficient plants are sufficient for proliferation of bacteroids and that the P-uptake system of bacteroids is in a repressed state even when host plant growth is severely restricted by phosphorus-deficiency stress.

  • PDF

Phosphoinositide turnover in Toll-like receptor signaling and trafficking

  • Le, Oanh Thi Tu;Nguyen, Tu Thi Ngoc;Lee, Sang Yoon
    • BMB Reports
    • /
    • v.47 no.7
    • /
    • pp.361-368
    • /
    • 2014
  • Lipid components in biological membranes are essential for maintaining cellular function. Phosphoinositides, the phosphorylated derivatives of phosphatidylinositol (PI), regulate many critical cell processes involving membrane signaling, trafficking, and reorganization. Multiple metabolic pathways including phosphoinositide kinases and phosphatases and phospholipases tightly control spatio-temporal concentration of membrane phosphoinositides. Metabolizing enzymes responsible for PI 4,5-bisphosphate (PI(4,5)P2) production or degradation play a regulatory role in Toll-like receptor (TLR) signaling and trafficking. These enzymes include PI 4-phosphate 5-kinase, phosphatase and tensin homolog, PI 3-kinase, and phospholipase C. PI(4,5)P2 mediates the interaction with target cytosolic proteins to induce their membrane translocation, regulate vesicular trafficking, and serve as a precursor for other signaling lipids. TLR activation is important for the innate immune response and is implicated in diverse pathophysiological disorders. TLR signaling is controlled by specific interactions with distinct signaling and sorting adaptors. Importantly, TLR signaling machinery is differentially formed depending on a specific membrane compartment during signaling cascades. Although detailed mechanisms remain to be fully clarified, phosphoinositide metabolism is promising for a better understanding of such spatio-temporal regulation of TLR signaling and trafficking.

Induction of Autophagy by Paeonia lactiflora Root Extracts through Upregulation p62/SQSTM1 in RAW264.7 Cells (작약(Paeonia lactiflora) 뿌리 추출물의 대식세포에서 p62/SQSTM1 증가를 통한 자가포식 유도)

  • Jin Boo Jeong
    • Korean Journal of Plant Resources
    • /
    • v.36 no.4
    • /
    • pp.275-281
    • /
    • 2023
  • Autophagy contributes to enhancing the immune system (innate and adaptive immune system) against foreign pathogens. Autophagy of macrophages is used as a major indicator for developing vaccine adjuvants to increase the adaptive immune response. In this study, PLR activated autophagy and increased p62/SQSTM1. The knockdown of p62/SQSTM1 attenuated PLR-mediated autophagy. Inhibition of TLR4 blocked PLR-mediated increase in p62/SQSTM1 level and autophagy induction. In addition, inhibition of PI3K blocked HSL-mediated increase of p62/SQSTM1. PLR increased Nrf2 level and the inhibition of TLR4 and PI3K reduced PLR-mediated increase of Nrf2. Taken together, it is believed that PLR may induce autophagy through upregulating p62/SQSTM1 via TLR4/PI3K/Nrf2 signaling pathway.

ALGEBRAIC STRUCTURES IN A PRINCIPAL FIBRE BUNDLE

  • Park, Joon-Sik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.3
    • /
    • pp.371-376
    • /
    • 2008
  • Let $P(M,G,{\pi})=:P$ be a principal fibre bundle with structure Lie group G over a base manifold M. In this paper we get the following facts: 1. The tangent bundle TG of the structure Lie group G in $P(M,G,{\pi})=:P$ is a Lie group. 2. The Lie algebra ${\mathcal{g}}=T_eG$ is a normal subgroup of the Lie group TG. 3. $TP(TM,TG,{\pi}_*)=:TP$ is a principal fibre bundle with structure Lie group TG and projection ${\pi}_*$ over base manifold TM, where ${\pi}_*$ is the differential map of the projection ${\pi}$ of P onto M. 4. for a Lie group $H,\;TH=H{\circ}T_eH=T_eH{\circ}H=TH$ and $H{\cap}T_eH=\{e\}$, but H is not a normal subgroup of the group TH in general.

  • PDF

$\pi$-Nonbonded Interactions Involving Heteroatoms$^*$

  • Lee, Ik-Choon;Lee, Bon-Su;Yang, Ki-Yull
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.4
    • /
    • pp.157-161
    • /
    • 1983
  • Ab initio calculations were performed on systems containing various basic ${\pi}$ fragments and glycines to generalize the ${\pi}$-nonbonded interaction (${\pi}$-NBI) method of determining relative conformational and configurational stability of organic molecules. It was found that the relative stability of conformational isomers can be determined in general by the simple application of the ${\pi}$-NBI method, but the method is not applicable to the geometrical isomerism in which stronger structural factors are involved. The ${\pi}$-NBI effect of a crowded ${\pi}$-structure ($n{\pi}/m$) is maximum for the system in which n is equal to m. In crowded structures containing heteroatoms, ${P^{\pi}}_{ij}$ values of 4N+1 system may become negative, but this sign reversal does not invalidate the predictions based on the ${\pi}$-NBI method.