Browse > Article
http://dx.doi.org/10.14348/molcells.2016.2292

Dual Regulation of R-Type CaV2.3 Channels by M1 Muscarinic Receptors  

Jeong, Jin-Young (Department of Brain and Cognitive Sciences, DGIST)
Kweon, Hae-Jin (Department of Brain and Cognitive Sciences, DGIST)
Suh, Byung-Chang (Department of Brain and Cognitive Sciences, DGIST)
Abstract
Voltage-gated $Ca^{2+}$ ($Ca_V$) channels are dynamically modulated by Gprotein-coupled receptors (GPCR). The $M_1$ muscarinic receptor stimulation is known to enhance $Ca_V2.3$ channel gating through the activation of protein kinase C (PKC). Here, we found that $M_1$ receptors also inhibit $Ca_V2.3$ currents when the channels are fully activated by PKC. In whole-cell configuration, the application of phorbol 12-myristate 13-acetate (PMA), a PKC activator, potentiated $Ca_V2.3$ currents by ~two-fold. After the PMA-induced potentiation, stimulation of $M_1$ receptors decreased the $Ca_V2.3$ currents by $52{\pm}8%$. We examined whether the depletion of phosphatidylinositol 4,5-bisphosphate ($PI(4,5)P_2$) is responsible for the muscarinic suppression of $Ca_V2.3$ currents by using two methods: the Danio rerio voltage-sensing phosphatase (Dr-VSP) system and the rapamycin-induced translocatable pseudojanin (PJ) system. First, dephosphorylation of $PI(4,5)P_2$ to phosphatidylinositol 4-phosphate (PI(4)P) by Dr-VSP significantly suppressed $Ca_V2.3$ currents, by $53{\pm}3%$. Next, dephosphorylation of both PI(4)P and $PI(4,5)P_2$ to PI by PJ translocation further decreased the current by up to $66{\pm}3%$. The results suggest that $Ca_V2.3$ currents are modulated by the $M_1$ receptor in a dual mode-that is, potentiation through the activation of PKC and suppression by the depletion of membrane $PI(4,5)P_2$. Our results also suggest that there is rapid turnover between PI(4)P and $PI(4,5)P_2$ in the plasma membrane.
Keywords
$Ca_V2.3$ channel; Danio rerio voltage-sensitive phosphatase(Dr-VSP); $M_1$ muscarinic receptor; $PI(4,5)P_2$; Pseudojanin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Balla, T. (2013). Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol. Rev. 93, 1019-1137.   DOI
2 Bannister, R.A., Melliti, K., and Adams, B.A. (2004). Differential modulation of CaV2.3 $Ca6{2+}$ channels by $G{\alpha}_{q/11}$-coupled muscarinic receptors. Mol. Pharmacol. 65, 381-388.   DOI
3 Bielas, S.L., Silhavy, J.L., Brancati, F., Kisseleva, M.V., Al-Gazali, L., Sztriha, L., Bayoumi, R.A., Zaki, M.S., Abdel-Aleem, A., Rosti, R.O., et al. (2009). Mutations in INPP5E, encoding inositol polyphosphate- 5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies. Nat. Genet. 41, 1032-1036.   DOI
4 Dickson, E.J., Jensen, J.B., and Hille, B. (2014). Golgi and plasma membrane pools of PI(4)P contribute to plasma membrane PI(4,5)$P_2$ and maintenance of KCNQ2/3 ion channel current. Proc. Natl. Acad. Sci. USA 111, E2281-90.   DOI
5 Fang, H., Franke, R., Patanavanich, S., Lalvani, A., Powell, N.K., Sando, J.J., and Kamatchi, G.L. (2005). Role of ${\alpha}1$ 2.3 subunit I-II linker sites in the enhancement of $Ca_V2.3$ current by phorbol 12-myristate 13-acetate and acetyl-$\beta$-methylcholine. J. Biol. Chem. 208, 23559-23565.
6 Gamper, N., Reznikov, V., Yamada, Y., Yang, J., and Shapiro, M.S. (2004). Phosphatidylinositol 4,5-bisphosphate signals underlie receptor-specific $G_{q/11}$-mediated modulation of N-type $Ca^{2+}$ channels. J. Neurosci. 24, 10980-10992.   DOI
7 Guo, S., Stolz, L.E., Lemrow, S.M., and York, J.D. (1999). SAC1- like domains of yeast SAC1, INP52, and INP53 and of human synaptojanin encode polyphosphoinositide phosphatases. J. Biol. Chem. 274, 12990-12995.   DOI
8 Hamid, J., Nelson, D., Spaetgens, R., Dubel, S.J., Snutch, T.P., and Zamponi, G.W. (1999). Identification of an integration center for cross-talk between protein kinase C and G protein modulation of N-type calcium channels. J. Biol. Chem. 274, 6195-6202.   DOI
9 Hammond, G.R., Fischer, M.J., Anderson, K.E., Holdich, J., Koteci, A., Balla, T., and Irvine, R.F. (2012). PI4P and $PI(4,5)P_2$ are essential but independent lipid determinants of membrane identity. Science 337, 727-730.   DOI
10 Hilgemann, D.W., Feng, S., and Nasuhoglu, C. (2001). The complex and intriguing lives of $PIP_2$ with ion channels and transporters. Sci. STKE 2001, re19.
11 Huang, C.L. (2007). Complex roles of $PIP_2$ in the regulation of ion channels and transporters. Am. J. Physiol. Renal Physiol. 293, F1761-F1765.   DOI
12 Inoue, T., Heo, W.D., Grimley, J.S., Wandless, T.J., and Meyer, T. (2005). An inducible translocation strategy to rapidly activate and inhibit small GTPase signaling pathways. Nat. Methods 2, 415-418.   DOI
13 Kamatchi, G.L., Tiwari, S.N., Chan, C.K., Chen, D., Do, S.H., Durieux M.E., and Lynch C. 3rd. (2003). Distinct regulation of expressed calcium channels 2.3 in Xenopus oocytes by direct or indirect activation of protein kinase C. Brain Res. 968, 227-237.   DOI
14 Kamatchi, G.L., Franke, R., Lynch, C. 3rd, and Sando, J.J. (2004). Identification of sites responsible for potentiation of type 2.3 calcium currents by acetyl-$\beta$-methylcholine. J. Biol. Chem. 279, 4102-4109.   DOI
15 Kammermeier, P.J., Ruiz-Velasco, V., and Ikeda, S.R. (2000). A voltage-independent calcium current inhibitory pathway activated by muscarinic agonists in rat sympathetic neurons requires both $G{\alpha}_{q/11}$ and $G{\beta}{\gamma}$. J. Neurosci. 20, 5623-5629.   DOI
16 Keum, D., Baek, C., Kim, D.I., Kweon, H.J., and Suh, B.C. (2014). Voltage-dependent regulation of $Ca_V2.2$ channels by $G_q$-coupled receptor is facilitated by membrane-localized $\beta$ subunit. J. Gen. Physiol. 144, 297-309.   DOI
17 Kim, D.I., Park, Y., Jang, D.J., and Suh, B.C. (2015). Dynamic phospholipid interaction of ${\beta}2e$ subunit regulates the gating of voltage-gated $Ca^{2+}$ channels. J. Gen. Physiol. 145, 529-541.   DOI
18 Liang, H., DeMaria, C.D., Erickson, M.G., Mori, M.X., Alseikhan, B.A., and Yue, D.T. (2003). Unified mechanisms of $Ca^{2+}$ regulation across the $Ca^{2+}$ channel family. Neuron 39, 951-960.   DOI
19 Kwiatkowska, K. (2010). One lipid, multiple functions: how various pools of PI(4,5)$P_2$ are created in the plasma membrane. Cell. Mol. Life Sci. 67, 3927-3946.   DOI
20 Lee, S.C., Choi, S., Lee, T., Kim, H.L., Chin, H., and Shin, H.S. (2002) Molecular basis of R-type calcium channels in central amygdala neurons of the mouse. Proc. Natl. Acad. Sci. USA 99, 3276-3281.   DOI
21 Melliti, K., Meza, U., and Adams, B. (2000). Muscarinic stimulation of ${\alpha}1E$ Ca channels is selectively blocked by the effector antagonist function of RGS2 and phospholipase C-${\beta}1$. J. Neurosci. 20, 7167-7173.   DOI
22 Melliti, K., Meza, U., and Adams, B.A. (2001). RGS2 blocks slow muscarinic inhibition of N-type $Ca^{2+}$ channels reconstituted in a human cell line. J. Physiol. 532, 337-347.   DOI
23 Meza, U., Thapliyal, A., Bannister, R.A., and Adams, B.A. (2007). Neurokinin 1 receptors trigger overlapping stimulation and inhibition of $Ca_V2.3$ (R-type) calcium channels. Mol. Pharmacol. 71, 284-293.
24 Niidome, T., Kim, M.S., Friedrich, T., and Mori, Y. (1992). Molecular cloning and characterization of a novel calcium channel from rabbit brain. FEBS Lett. 308, 7-13.   DOI
25 Okamura, Y, Murata, Y., and Iwasaki, H. (2009). Voltage-sensing phosphatase: actions and potentials. J. Physiol. 587(Pt 3), 513-520.
26 Oude Weernink, P.A., Schmidt, M., and Jakobs, K.H. (2004). Regulation and cellular roles of phosphoinositide 5-kinases. Eur. J. Pharmacol. 500, 87-99.   DOI
27 Perez-Rosello, T., Figueroa, A., Salgado, H., Vilchis, C., Tecuapetia, F., Guzman, J.N., Galarraga, E., and Bargas, J. (2004). Cholinergic control of firing pattern and neurotransmission in rat neostriatal projection neurons: role of $Ca_V2.1$ and $Ca_V2.2$ $Ca^{2+}$ channels. J. Neurophysiol. 93, 2507-2519.
28 Page, K.M., Cantí, C., Stephens, G.J., Berrow, N.S., and Dolphin, A.C. (1998). Identification of the amino terminus of neuronal $Ca^{2+}$ channel ${\alpha}1$ subunits $\alpha$ 1B and ${\alpha}1E$ as an essential determinant of G-protein modulation. J. Neurosci. 18, 4815-4824.   DOI
29 Perez-Burgos, A., Perez-Rosello, T., Salgado, H., Flores-Barrera, E., Prieto, G.A., Fugueroa, A., Galarraga, E., and Bargas, J. (2008). Muscarinic M1 modulation of N- and L-types of calcium channels is mediated by protein kinase C in neostriatal neurons. Neuroscience 155, 1079-1097.   DOI
30 Perez-Burgos, A., Prieto, G.A., Galarraga, E., and Bargas, J. (2010). $Ca_V2.1$ channels are modulated by muscarinic $M_1$ receptors through phosphoinositied hydrolysis in neostriatal neurons. Neuroscience 165, 293-299.   DOI
31 Rajagopal, S., Fang, H., Patanavanich, S., Sando, J.J., and Kamatchi, G.L. (2008). Protein kinase C isozyme-specific potentiation of expressed $Ca_V2.3$ currents by acetyl-$\beta$-methylcholine and phorbol- 12-myristate, 13-acetate. Brain Res. 1210, 1-10.   DOI
32 Rohacs T. (2009). Phosphoinositide regulation of non-canonical transient receptor potential channels. Cell Calcium 45, 554-565.   DOI
33 Stea, A., Soong, T.W., and Snutch, T.P. (1995). Determinants of PKC-dependent modulation of a family of neuronal calcium channels. Neuron 15, 929-940.   DOI
34 Saequsa, H., Kurihara, T., Zong, S., Minowa, O., Kazuno, A., Han, W., Matsuda, Y., Yamanaka, H., Osanai, M., Noda, T., et al. (2000). Altered pain responses in mice lacking ${\alpha}1E$ subunit of the voltage-dependent $Ca^{2+}$ channel. Proc. Natl. Acad. Sci. USA 97, 6132-6137.   DOI
35 Shapiro, M.S., Loose, M.D., Hamilton, S.E., Nathanson, N.M., Gomeza, J., Wess, J., and Gille, B. (1999). Assignment of muscarinic receptor subtypes mediating G-protein modulation of $Ca^{2+}$ channels by using knockout mice. Proc. Natl. Acad. Sci. USA 96, 10899-10904.   DOI
36 Soong, T.W., Stea, A., Hodson, C.D., Dubel, S.J., Vincent, S.R., and Snutch, T.P. (1993). Structure and functional expression of a member of the low voltage-activated calcium channel family. Science 260, 1133-1136.   DOI
37 Suh, B.C., and Hille, B. (2005). Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate. Curr. Opin. Neurobiol. 15, 370-378.   DOI
38 Suh, B.C., and Hille, B. (2008). $PIP_2$ is a necessary cofactor for ion channel function: How and why? Annu. Rev. Biophys. 37, 175-195.   DOI
39 Suh, B.C., Inoue, T., Meyer, T., and Hille, B. (2006). Rapid chemically induced changes of PtdIns(4,5)$P_2$ gate KCNQ ion channels. Science 314, 1454-1457.   DOI
40 Suh, B.C., Leal, K., and Hille, B. (2010). Modulation of high-voltage activated $Ca^{2+}$ channels by membrane phosphatidylinositol 4,5-bisphosphate. Neuron 67, 224-238.   DOI
41 Wu, L.G., Borst, J.G., and Sakmann, B. (1998). R-type $Ca^{2+}$ currents evoke transmitter release at a rat central synapse. Proc. Natl. Acad. Sci. USA 95, 4720-4725.   DOI
42 Suh, B.C., Kim, D.I., Falkenburger, B.H., and Hille, B. (2012). Membrane-localized $\beta$-subunits alter the $PIP_2$ regulation of highvoltage activated $Ca^{2+}$ channels. Proc. Natl. Acad. Sci. USA 109, 3161-3166.   DOI
43 Tai, C., Kuzmiski, J.B., and MacVicar, B.A. (2006). Muscarinic enhancement of R-type calcium currents in hippocampal CA1 pyramidal neurons. J. Neurosci. 26, 6249-6258.   DOI
44 Williams, M.E., Marubio, L.M., Deal, C.R., Hans, M., Brust P.F., Philipson L.H., Miller R.J., Johnson E.C., Harpold M.M., and Ellis S.B. (1994). Structure and functional characterization of neuronal ${\alpha}1E$ channel subtypes. J. Biol. Chem. 269, 22347-22357.
45 Wuttke, A., Sågetorp, J., and Tengholm, A. (2010). Distinct plasmamembrane PtdIns(4)P and PtdIns(4,5)$P_2$ dynamics in secretagogue- stimulated $\beta$-cells. J. Cell Sci. 123, 1492-1502.   DOI
46 Zamponi, G.W., Bourinet, E., Nelson, D., Nargeot, J., and Snutch, T.P. (1997). Crosstalk between G proteins and protein kinase C mediated by the calcium channel ${\alpha}1$ subunit. Nature 385, 442-446.   DOI