• Title/Summary/Keyword: PI3K-Akt signaling

Search Result 276, Processing Time 0.034 seconds

HS-146, a novel phosphoinositide 3-kinase α inhibitor, induces the apoptosis and inhibits the metastatic ability of human breast cancer cells

  • Ok Hyeon Kim;Ju-Hee Lee;Shinmee Mah;Sung Yun Park;Sungwoo Hong;Soon-Sun Hong
    • International Journal of Oncology
    • /
    • v.56 no.6
    • /
    • pp.1509-1520
    • /
    • 2020
  • The phosphoinositide 3-kinase (PI3K) signaling pathway plays an important role in human cancer as it regulates critical cellular functions, such as survival, proliferation and metabolism. In the present study, a novel PI3Kα inhibitor (HS-146) was synthesized and its anticancer effects on MCF-7, MDA-MB-231, SKBR3 and BT-474 human breast cancer cell lines were confirmed. HS-146 was found to be most effective in inhibiting the proliferation of MCF-7 cells and in inducing cell cycle arrest in the G0/G1 phase by downregulating cyclin D1, cyclin E, cyclin-dependent kinase (Cdk)2 and Cdk4, and upregulating p21Waf1/Cip1 protein levels in this cell line. The induction of apoptosis by HS-146 was confirmed by DAPI staining and western blot analysis. Cell shrinkage and nuclear condensation, which are typical morphological markers of apoptosis, were increased by HS-146 in the MCF-7 cells in a concentration-dependent manner, and HS-146 also increased the protein expression levels of cleaved poly(ADP-ribose) polymerase (PARP) and decreased the protein expression levels of Mcl-1 and caspase-7. In addition, HS-146 effectively decreased the phosphorylation levels of downstream PI3K effectors, such as Akt, mammalian target of rapamycin (mTOR), glycogen synthase kinase 3β (GSK3β), p70S6K1 and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1). Hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF) expression were also suppressed by HS-146 under hypoxic conditions, and HS-146 inhibited the migration and invasion of MCF-7 cells in a concentration-dependent manner. On the whole, the findings of the present study suggest that HS-146, a novel PI3Kα inhibitor, may be an effective novel therapeutic candidate that suppresses breast cancer proliferation and metastasis by inhibiting the PI3K/Akt/mTOR pathway.

Signal Transduction of the Protective Effect of Insulin Like Growth Factor-1 on Adriamycin-Induced Apoptosis in Cardiac Muscle Cells

  • Chae, Han-Jung;Kim, Hyung-Ryong;Bae, Jee-hyeon;Chae, Soo-Uk;Ha, Ki-Chan;Chae, Soo-Wan
    • Archives of Pharmacal Research
    • /
    • v.27 no.3
    • /
    • pp.324-333
    • /
    • 2004
  • To determine whether Insulin-like growth factor (IGF-I) treatment represents a potential means of enhancing the survival of cardiac muscle cells from adriamycin (ADR)-induced cell death, the present study examined the ability of IGF-I to prevent cell death. The study was performed utilising the embryonic, rat, cardiac muscle cell line, H9C2. Incubating cardiac muscle cells in the presence of adriamycin increased cell death, as determined by MTT assay and annexin V-positive cell number. The addition of 100 ng/mL IGF-I, in the presence of adriamycin, decreased apoptosis. The effect of IGF-I on phosphorylation of PI, a substrate of phosphatidylinositol 3-kinase (PI 3-kinase) or protein kinase B (AKT), was also examined in H9C2 cardiac muscle cells. IGF-I increased the phosphorylation of ERK 1 and 2 and $PKC{\;}{\zeta}{\;}kinase$. The use of inhibitors of PI 3-kinase (LY 294002), in the cell death assay, demonstrated partial abrogation of the protective effect of IGF-I. The MEK1 inhibitor-PD098059 and the PKC inhibitor-chelerythrine exhibited no effect on IGF-1-induced cell protection. In the regulatory subunit of PI3K-p85- dominant, negative plasmid-transfected cells, the IGF-1-induced protective effect was reversed. This data demonstrates that IGF-I protects cardiac muscle cells from ADR-induced cell death. Although IGF-I activates several signaling pathways that contribute to its protective effect in other cell types, only activation of PI 3-kinase contributes to this effect in H9C2 cardiac muscle cells.

p,p'-DDT induces apoptosis in human endometrial stromal cells via the PI3K/AKT pathway and oxidative stress

  • So Ra Oh;Seung Bin Park;Yeon Jean Cho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.51 no.3
    • /
    • pp.247-259
    • /
    • 2024
  • Objective: Bis-[4-chlorophenyl]-1,1,1-trichloroethane (DDT), one of the most widely used synthetic pesticides, is an endocrine-disrupting chemical with the potential to interfere with the human reproductive system. The effects of DDT and one of its metabolites, p,p'-DDT, on human endometrial stromal cells (ESCs) and health outcomes remain unknown. In this study, we investigated whether p,p'-DDT induces an imbalance in cell proliferation and apoptosis in human ESCs via oxidative stress. Methods: We assessed apoptosis in ESCs by quantifying the expression of markers associated with both intrinsic and extrinsic pathways. Additionally, we measured levels of reactive oxygen species (ROS), antioxidant enzyme activity, and estrogen receptors (ERs). We also examined changes in signaling involving nuclear factor kappa-light-chain-enhancer of activated B cells. Results: Following treatment with 1,000 pg/mL of p,p'-DDT, we observed an increase in Bax expression, a decrease in Bcl-2 expression, and increases in the expression of caspases 3, 6, and 8. We also noted a rise in the generation of ROS and a reduction in glutathione peroxidase expression after treatment with p,p'-DDT. Additionally, p,p'-DDT treatment led to changes in ER expression and increases in the protein levels of phosphatidylinositol 3-kinase (PI3K), phospho-protein kinase B (phospho-AKT), and phospho-extracellular signal-regulated kinase (phospho-ERK). Conclusion: p,p'-DDT was found to induce apoptosis in human ESCs through oxidative stress and an ER-mediated pathway. The activation of the PI3K/AKT and ERK pathways could represent potential mechanisms by which p,p'-DDT prompts apoptosis in human ESCs and may be linked to endometrial pathologies.

c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) are involved in Mycobacterium tuberculosis-induced expression of Leukotactin-1

  • Cho, Jang-Eun;Park, Sang-Jung;Cho, Sang-Nae;Lee, Hye-Young;Kim, Yoon-Suk
    • BMB Reports
    • /
    • v.45 no.10
    • /
    • pp.583-588
    • /
    • 2012
  • Leukotactin(Lkn)-1 is a CC chemokine and is upregulated in macrophages in response to Mycobacterium tuberculosis (MTB) infection. We investigated whether mitogen-activated protein kinases (MAPKs) are involved in MTB-induced expression of Lkn-1. The up-regulation of Lkn-1 by infection with MTB was inhibited in cells treated with inhibitors specific for JNK (SP600125) or p38 MAPK (SB202190). Since the up-regulation of Lkn-1 by MTB has been reported to be mediated by the PI3-K/PDK1/Akt signaling, we examined whether JNK and/or p38 MAPK are also involved in this signal pathway. MTB-induced Akt phosphorylation was blocked by treatment with JNK- or p38 MAPK-specific inhibitors implying that p38 and JNK are upstream of Akt. In addition, treatment with the PI3-K-specific inhibitor inhibited MTB-stimulated activation of JNK or p38 MAPK implying that PI3-K is upstream of JNK and p38 MAPK. These results collectively suggest that JNK and p38 MAPK are involved in the signal pathway responsible for MTB-induced up-regulation of Lkn-1.

Protective Effects of Hyperoside from Juglans sinensis Leaves against 1-methyl-4-phenylpyridinium-Induced Neurotoxicity (1-methyl-4-phenylpyridinium으로 유도된 신경 손상에 대한 호두나무잎에서 분리된 Hyperoside의 보호 효과)

  • Pariyar, Ramesh;Svay, Thida;Seo, Jungwon
    • Korean Journal of Pharmacognosy
    • /
    • v.49 no.3
    • /
    • pp.231-239
    • /
    • 2018
  • Parkinson's disease (PD), one of common neurodegenerative diseases, is caused by the death of dopaminergic neurons in the substantia nigra pars compacta. The loss of dopaminergic neurons in PD is associated with oxidative stress and mitochondrial dysfunction. Hyperoside (quercetin 3-O-${\beta}$-D-galactopyranoside) was reported to have protective properties against oxidative stress by reducing intracellular reactive oxygen species (ROS) and increasing antioxidant enzyme activity. In this study, we examined the neuroprotective effect of hyperoside against 1-methyl-4-phenyl pyridinium ($MPP^+$)-induced cell model of PD and the underlying molecular mechanisms. Hyperoside significantly decreased $MPP^+$-induced cell death, accompanied by a reduction in poly ADP-ribose polymerase (PARP) cleavage. Furthermore, it attenuated $MPP^+$-induced intracellular ROS and disruption of mitochondrial membrane potential (MMP), with the reduction of Bax/Bcl-2 ratio. Moreover, hyperoside significantly increased the phosphorylation of Akt, but it has no effects on $GSK3{\beta}$ and MAPKs. Pharmacological inhibitor of PI3K/Akt abolished the cytoprotective effects of hyperoside against $MPP^+$. Taken together, these results demonstrate that hyperoside significantly attenuates $MPP^+$-induced neurotoxicity through PI3K/Akt signaling pathways in SH-SY5Y cells. Our findings suggest that hyperoside might be one of the potential candidates for the treatment of PD.

Protective Effect of Rice Bran Oil against β-Amyloid Protein-Induced Memory Impairment and Neuronal Death in Mice

  • Jang, Ji Yeon;Lee, Hong Kyu;Yoo, Hwan-Su;Seong, Yeon Hee
    • Natural Product Sciences
    • /
    • v.26 no.3
    • /
    • pp.221-229
    • /
    • 2020
  • This study was undertaken to investigate the protective effect of rice bran oil (RBO) on amyloid β protein (Aβ) (25-35)-induced memory impairment and brain damage in an ICR mouse model. Memory impairment was produced by intracerebroventricular microinjection of 15 nmol Aβ (25-35) and assessed using the passive avoidance test. Treatment with RBO at 0.1, 0.5, or 1 mL/kg (p.o. daily for 8 days) protected against Aβ (25-35)-induced memory impairment. Furthermore, Aβ (25-35)-induced decreases in glutathione and increases in lipid peroxidation and cholinesterase activity in brain tissue were inhibited by RBO, and Aβ (25-35)-induced increases of phosphorylated mitogen-activated protein kinases (MAPKs) and inflammatory factors, and changes in the levels of apoptosis-related proteins were significantly inhibited by RBO. Furthermore, Aβ (25-35) suppressed the PI3K/Akt pathway and the phosphorylation of CREB, but increased phosphorylation of tau (p-tau) in mice brain; these effects were significantly inhibited by administration of RBO. These results suggest that RBO inhibits Aβ (25-35)-induced memory impairment by inducing anti-apoptotic and anti-inflammatory effects, promoting PI3K/Akt/CREB signaling, and thus, inhibiting p-tau formation.

Mda-9/syntenin Promotes Human Brain Glioma Migration through Focal Adhesion Kinase (FAK)-JNK and FAK-AKT Signaling

  • Zhong, Dong;Ran, Jian-Hua;Tang, Wen-Yuan;Zhang, Xiao-Dong;Tan, Yun;Chen, Gui-Jie;Li, Xiao-Song;Yan, Yi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2897-2901
    • /
    • 2012
  • Invasion is usually recognized as the main reason for the high recurrence and death rates of glioma and restricts the efficacy of surgery and other therapies. Therefore, we aimed to investigate the mechanism involved in promotion effects of mda-9/syntenin on human glioma cell migration. The wound healing method was used to test the migration ability of human glioma cells CHG-5 and CHG-hS, stably overexpressing mda-9/syntenin. Western blotting was performed to determine the expression and phosphorylation of focal adhesion kinase (FAK) and JNK in CHG-5 and CHG-hS cells. The migration ability of CHG-hS cells was significantly higher than that of CHG-5 cells in fibronectin (FN)-coated culture plates. Phosphorylation of FAK on tyrosine 397, 576, and 925 sites was increased with time elapsed in CHG-hS cells. However, phosphorylated FAK on the tyrosine 861 site was not changed. Phosphorylated Src, JNK and Akt levels in CHG-hS cells were also significantly upregulated. Phosphorylation of JNK and Akt were abolished by the specific inhibitors SP600125 and LY294002, respectively, and the migration ability of CHG-hS cells was decreased, indicating that the JNK and PI3K/Akt pathways play important roles in regulating mda-9/syntenin-induced human brain glioma migration. Our results indicate Mda-9/syntenin overexpression could activate FAK-JNK and FAK-Akt signaling and then enhance the migration capacity of human brain glioma cells.

Gardenia jasminoides Exerts Anti-inflammatory Activity via Akt and p38-dependent Heme Oxygenase-1 Upregulation in Microglial Cells (소교세포에서 heme oxygenase-1 발현 유도를 통한 치자(Gardenia jasminoides)의 항염증 효과)

  • Song, Ji Su;Shin, Ji Eun;Kim, Ji-Hee;Kim, YoungHee
    • Journal of Life Science
    • /
    • v.27 no.1
    • /
    • pp.8-14
    • /
    • 2017
  • Died Gardenia jasminoides fruit is used as a dye in the food and clothes industries in Asia. The present study investigated the anti-inflammatory effects of aqueous extract of G. jasminoides fruits (GJ) in BV-2 microglial cells. GJ inhibited lipopolysaccharide-induced nitric oxide (NO) secretion, inducible nitric oxide synthase (iNOS) expression, and reactive oxygen species production, without affecting cell viability. Furthermore, GJ increased the expression of heme oxygenase-1 (HO-1) in a dose-dependent manner. Moreover, the inhibitory effect of GJ on iNOS expression was abrogated by small interfering RNA-mediated knock-down of HO-1. In addition, GJ induced nuclear translocation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor that regulates HO-1 expression. GJ-mediated expression of HO-1 was suppressed by LY294002, a phosphoinositide 3-kinase (PI-3K) inhibitor, and SB203580, a p38 kinase inhibitor, but not by the extracellular signal-regulated kinase (ERK) inhibitor PD98059 or c-Jun N-terminal kinase (JNK) inhibitor SP600125. GJ also enhanced the phosphorylation of Akt and p38. These results suggest that GJ suppresses the production of NO, a pro-inflammatory mediator, by inducing HO-1 expression via PI-3K/Akt/p38 signaling. These findings illustrate a novel molecular mechanism by which extract from G. jasminoides fruits inhibits neuroinflammation.

Effect of Submerged Culture of Ceriporia lacerata Mycelium on Insulin Signaling Pathway in 3T3-L1 Cell (Ceriporia lacerata 균사체 배양물이 3T3-L1 세포에서 인슐린 신호 전달에 미치는 영향)

  • Shin, Eun Ji;Kim, Ji-Eun;Kim, Ji-Hye;Park, Yong Man;Yoon, Sung Kyoon;Jang, Byeong-Churl;Lee, Sam-Pin;Kim, Byoung-Cheon
    • Journal of Life Science
    • /
    • v.26 no.3
    • /
    • pp.325-330
    • /
    • 2016
  • In this study, we evaluated the antidiabetic effect of submerged culture of Ceriporia lacerata mycelium (CL01) on glucose uptake and the expression of mRNA and protein of major signal markers of insulin signaling pathway in 3T3-L1 adipocytes. After 3T3-L1 adipocytes were pre-treated by CL01 (0, 2, 10 mg/ml) for 8 hours, followed with treatment of insulin, the glucose uptake levels significantly increased by more 55.1%, 94.4% than negative control respectively (p<0.01, 0.001) in a dose-dependent manner. However, in case of CL01 pre-treatment without insulin, the glucose uptake did not increase compared with insulin-treated 3T3-L1. Also we demonstrated that the protein expression levels of pIR β, pAkt, pPI3K and pAMPK and the mRNA expression levels of GLUT4 in adipocytes inducing insulin resistance increased in CL01-treated group compared with negative control. These results demonstrated that CL01 affected glucose metabolism and the protein and gene expression through insulin signaling pathway, and increased glucose uptake levels effectively. More than 90% of those who have suffered for type 2 diabetes are more likely to have from hyperinsulinemia, hypertension, obesity and etc. because of altered insulin signaling pathway. So, it is probably considered that intake of CL01 may treat type 2 diabetes by normalization of insulin signaling pathway, and it will provide useful evidences regarding a mechanism for cure of type 2 diabetes.

Extract from Artemisia annua Linné Induces Apoptosis through the Mitochondrial Signaling Pathway in HepG2 Cells (HepG2 간암세포에서 미토콘드리아 경로를 통한 개똥쑥 추출물의 Apoptosis 유도 효과)

  • Kim, Bo Min;Kim, Guen Tae;Kim, Eun Ji;Lim, Eun Gyeong;Kim, Sang-Yong;Kim, Young Min
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.12
    • /
    • pp.1708-1716
    • /
    • 2016
  • The Akt/mammalian target of the rapamycin (mTOR) pathway is activated in the majority of human cancers. Activation of the Akt/mTOR pathway confers resistance to many types of cancer therapy. In this study, we evaluated the apoptotic effect of ethanol extract of Artemisia annua L. through down-regulation of Akt signal pathways and the mitochondrial pathway in hepato-carcinoma cells (HepG2). A. annua extract is known as a medicinal herb that is effective against cancer. We evaluated anti-proliferative activity by MTT-based viability assay and apoptotic effect by Annexin-V/PI staining, mitochondrial membrane potential (MMP), and caspase-3/7 activity as determined by flow cytometry. A. annua treatment led to loss of MMP, resulting in cytochrome c-inducible activation of caspase-3/7. Treatment with A. annua extract reduced activities of Akt/mTOR/anti-apoptotic proteins (such as Bcl-2 and $Bcl-X_L$), leading to increased activation of tumor suppressor p53 and pro-apoptotic proteins (such as Bax and Bak). We applied LY294002 (inhibitor of Akt) and rapamycin (inhibitor of mTOR) to determine the relationship between signal transduction of proteins associated with apoptosis. LY294002 and rapamycin significantly reduced cell viability and increased apoptosis. These results indicate that Bcl-2 and caspase-3 are key regulators in A. annua extract-induced apoptosis in HepG2 cells and are controlled through the Akt/mTOR signaling pathway.