• 제목/요약/키워드: PI3K/Akt signaling pathway

검색결과 190건 처리시간 0.024초

Inflammatory cytokines in midbrain periaqueductal gray contribute to diabetic induced pain hypersensitivity through phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway

  • Guo, Mochi;Jiang, Zongming;Chen, Yonghao;Wang, Fei;Wang, Zhifeng
    • The Korean Journal of Pain
    • /
    • 제34권2호
    • /
    • pp.176-184
    • /
    • 2021
  • Background: Diabetes-related neuropathic pain frequently occurs, and the underpinning mechanism remains elusive. The periaqueductal gray (PAG) exhibits descending inhibitory effects on central pain transmission. The current work aimed to examine whether inflammatory cytokines regulate mechanical allodynia and thermal hyperalgesia induced by diabetes through the phosphoinositide 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) pathway in the PAG. Methods: Streptozotocin (STZ) was administered intraperitoneally to mimic allodynia and hyperalgesia evoked by diabetes in rats. Behavioral assays were carried out for determining mechanical pain and thermal hypersensitivity. Immunoblot and ELISA were performed to examine PAG protein amounts of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), as well as their corresponding receptors in STZ rats, and the expression of PI3K/protein kinase B (Akt)/mTOR signaling effectors. Results: Increased PAG p-PI3K/p-Akt/p-mTOR protein amounts were observed in STZ-induced animals, a PI3K-mTOR pathway inhibition in the PAG attenuated neuropathic pain responses. Moreover, the PAG concentrations of IL-1β, IL-6, and TNF-α and their receptors (namely, IL-1R, IL-6R, and tumor necrosis factor receptor [TNFR] subtype TNFR1, respectively) were increased in the STZ rats. Additionally, inhibiting IL-1R, IL-6R, and TNFR1 ameliorated mechanical allodynia and thermal hyperalgesia in STZ rats, alongside the downregulation of PI3K-mTOR signaling. Conclusions: Overall, the current study suggests that upregulated proinflammatory cytokines and their receptors in the PAG activate PI3K-mTOR signaling, thereby producing a de-inhibition effect on descending pathways in modulating pain transmission, and eventually contributing to neuropathic pain.

지방세포분화에서 Hibiscus 추출물에 의한 Insulin signaling 억제효과 (Hibiscus Sabdariffa L. Inhibits the Insulin Signaling in Adipogenesis)

  • 김진경;송정훈
    • 동의생리병리학회지
    • /
    • 제21권1호
    • /
    • pp.86-92
    • /
    • 2007
  • Hibiscus sabdariffa L., a tropical beverage material, is used commonly as in folk medicine against hypertension, pyrexia, inflammation, liver disorders, and obesity. However, the mechanism by which Hibiscus sabdariffa L. modulates adipogenic differentiation is remained to be elusive. This report was designed to investigate the inhibitory effect of Hibiscus extract on insulin signaling pathway during adipocyte differentiation in 3T3-L1 preadipocytes. 3T3-L1 preadipocytes were differentiated with isobutylmethylxanthine, dexamethasone, and insulin (MDI) and followed by the addition of Hibiscus extract. Treatment with Hibiscus resulted in a decrease of lipid droplet accumulation, which was suppressed by PI-3 kinase inhibitor wortmannin in 3T3-L1 preadipocytes. Also, Hibiscus extract markedly attenuated the mRNA expression of adipogenic transcriptional factor PPAR${\gamma}$ and adipogenic hormon Leptin during adipogenesis. However, it did not affect the expression of adiponectin in 3T3-L1 preadipocytes differentiated with MDI mixture. Furthermore, Adipogenic differentiation by MDI mixture increased the phosphorylation and expression of PI3-Kinase and Akt in 3T3 preadipocytes, which was markedly suppressed by Hibiscus extract treatment. Taken together, our results suggest that Hibiscus extract suppressed the adipogenic differentiation of 3T3 preadipocytes through activation of PI3-Kinase and Akt signaling pathway.

Modulated Gene Expression of Toxoplasma gondii Infected Retinal Pigment Epithelial Cell Line (ARPE-19) via PI3K/Akt or mTOR Signal Pathway

  • Zhou, Wei;Quan, Juan-Hua;Gao, Fei-Fei;Ismail, Hassan Ahmed Hassan Ahmed;Lee, Young-Ha;Cha, Guang-Ho
    • Parasites, Hosts and Diseases
    • /
    • 제56권2호
    • /
    • pp.135-145
    • /
    • 2018
  • Due to the critical location and physiological activities of the retinal pigment epithelial (RPE) cell, it is constantly subjected to contact with various infectious agents and inflammatory mediators. However, little is known about the signaling events in RPE involved in Toxoplasma gondii infection and development. The aim of the study is to screen the host mRNA transcriptional change of 3 inflammation-related gene categories, PI3K/Akt pathway regulatory components, blood vessel development factors and ROS regulators, to prove that PI3K/Akt or mTOR signaling pathway play an essential role in regulating the selected inflammation-related genes. The selected genes include PH domain and leucine- rich-repeat protein phosphatases (PHLPP), casein kinase2 (CK2), vascular endothelial growth factor (VEGF), pigment epithelium-derived factor (PEDF), glutamate-cysteine ligase (GCL), glutathione S-transferase (GST), and NAD(P)H: quinone oxidoreductase (NQO1). Using reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), we found that T. gondii up-regulates PHLPP2, $CK2{\beta}$, VEGF, GCL, GST and NQO1 gene expression levels, but down-regulates PHLPP1 and PEDF mRNA transcription levels. PI3K inhibition and mTOR inhibition by specific inhibitors showed that most of these host gene expression patterns were due to activation of PI3K/Akt or mTOR pathways with some exceptional cases. Taken together, our results reveal a new molecular mechanism of these gene expression change dependent on PI3K/Akt or mTOR pathways and highlight more systematical insight of how an intracellular T. gondii can manipulate host genes to avoid host defense.

HepG2 인체 간암세포의 ROS 생성 및 ERK/Akt 신호전달 경로 조절을 통한 sanguinarine의 apoptosis 유도 (Sanguinarine Induces Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells through the Generation of ROS and Modulation of Akt/ERK Signaling Pathways)

  • 황주영;최영현
    • 생명과학회지
    • /
    • 제25권9호
    • /
    • pp.984-992
    • /
    • 2015
  • 혈근초(Sanguinaria canadensis)에서 처음 분리된 sanguinarine은 항산화, 항암 및 면역 증강 등의 효능이 있는 것으로 알려진 alkaloid 계열 물질 중의 하나이다. 본 연구에서는 인체간암 HepG2 세포를 대상으로 sanguinarine의 apoptosis 유도 효능 및 관련 기전 해석을 시도하였다. 본 연구의 결과에 의하면 sanguinarine은 HepG2 간암세포의 증식을 처리 농도 의존적으로 억제하였으며, 이는 apoptosis 유도와 연관성이 있었다. Sanguinarine에 의한 apoptosis 유도에는 Fas 및 Bax의 발현 증가, 미토콘드리아에서 세포질로의 cytochrome c 유리 및 MMPl (Δψm)의 소실을 동반하였다. Sanguinarine은 intrinsic 및 extrinsic apoptosis pathway의 활성에 관여하는 initiator caspase인 caspase-9와 -8의 활성과 effector caspase인 caspase-3의 활성 및 PARP 단백질의 단편화를 유발하였다. Sanguinarine은 또한 ROS의 생성을 촉진시켰으며, N-acetylcysteine 처리에 의한 ROS의 생성을 차단하였을 경우, sanguinarine에 의한 apoptosis 효능이 완벽하게 차단되었다. 아울러 sanguinarine은 Akt의 인산화를 억제한 반면, MAPKs의 인산화를 촉진시켰으며, 특히 PI3K와 ERK의 선택적 억제제는 sanguinarine에 의한 HepG2 간암세포의 증식을 더욱 억제시켰다. 따라서 sanguinarine에 의한 HepG2 간암세포의 apoptosis 유발에는 ROS 생성 의존적인 intrinsic 및 extrinsic signaling pathway가 동시에 활성화되며, PI3K/Akt 및 ERK 신호계가 관여함을 알 수 있었다.

Ginsenoside F2 enhances glucose metabolism by modulating insulin signal transduction in human hepatocarcinoma cells

  • Shengqiang Han ;Long You ;Yeye Hu ;Shuai Wei ;Tingwu Liu ;Jae Youl Cho ;Weicheng Hu
    • Journal of Ginseng Research
    • /
    • 제47권3호
    • /
    • pp.420-428
    • /
    • 2023
  • Background: Ginsenoside F2 (GF2), a minor component of Panax ginseng, has been reported to possess a wide variety of pharmacological activities. However, its effects on glucose metabolism have not yet been reported. Here, we investigated the underlying signaling pathways involved in its effects on hepatic glucose. Methods: HepG2 cells were used to establish insulin-resistant (IR) model and treated with GF2. Cell viability and glucose uptake-related genes were also examined by real-time PCR and immunoblots. Results: Cell viability assays showed that GF2 up to 50 μM did not affect normal and IR-HepG2 cell viability. GF2 reduced oxidative stress by inhibiting phosphorylation of the mitogen-activated protein kinases (MAPK) signaling components such as c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK1/2), and p38 MAPK, and reducing the nuclear translocation of NF-κB. Furthermore, GF2 activated PI3K/AKT signaling, upregulated the levels of glucose transporter 2 (GLUT-2) and GLUT-4 in IR-HepG2 cells, and promoted glucose absorption. At the same time, GF2 reduced phosphoenolpyruvate carboxykinase and glucose-6-phosphatase expression as well as inhibiting gluconeogenesis. Conclusion: Overall, GF2 improved glucose metabolism disorders by reducing cellular oxidative stress in IR-HepG2 cells via MAPK signaling, participating in the PI3K/AKT/GSK-3β signaling pathway, promoting glycogen synthesis, and inhibiting gluconeogenesis.

Gecko Proteins Exert Anti-Tumor Effect against Cervical Cancer Cells Via PI3-Kinase/Akt Pathway

  • Jeong, Ae-Jin;Chung, Chung-Nam;Kim, Hye-Jin;Bae, Kil-Soo;Choi, Song;Jun, Woo-Jin;Shim, Sang-In;Kang, Tae-Hong;Leem, Sun-Hee;Chung, Jin-Woong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권5호
    • /
    • pp.361-365
    • /
    • 2012
  • Anti-tumor activity of the proteins from Gecko (GP) on cervical cancer cells, and its signaling mechanisms were assessed by viable cell counting, propidium iodide (PI) staining, and Western blot analysis. GP induced the cell death of HeLa cells in a dose-dependent manner while it did not affect the viability of normal cells. Western blot analysis showed that GP decreased the activation of Akt, and co-administration of GP and Akt inhibitors synergistically exerted anti-tumor activities on HeLa cells, suggesting the involvement of PI3-kinase/Akt pathway in GP-induced cell death of the cancer cells. Indeed, the cytotoxic effect of GP against HeLa cells was inhibited by overexpression of constituvely active form of Akt in HeLa cells. The candidates of the functional proteins in GP were analyzed by Mass-spectrum. Taken together, our results suggest that GP elicits anti-tumor activity against HeLa cells by inhibition of PI3-kinase/Akt pathway.

Laminar Flow Inhibits ER Stress-Induced Endothelial Apoptosis through PI3K/Akt-Dependent Signaling Pathway

  • Kim, Suji;Woo, Chang-Hoon
    • Molecules and Cells
    • /
    • 제41권11호
    • /
    • pp.964-970
    • /
    • 2018
  • Atherosclerosis preferentially involves in prone area of low and disturbed blood flow while steady and high levels of laminar blood flow are relatively protected from atherosclerosis. Disturbed flow induces endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). ER stress is caused under stress that disturbs the processing and folding of proteins resulting in the accumulation of misfolded proteins in the ER and activation of the UPR. Prolonged or severe UPR leads to activate apoptotic signaling. Recent studies have indicated that disturbed flow significantly up-regulated $p-ATF6{\alpha}$, $p-IRE1{\alpha}$, and its target spliced XBP-1. However, the role of laminar flow in ER stress-mediated endothelial apoptosis has not been reported yet. The present study thus investigated the role of laminar flow in ER stress-dependent endothelial cell death. The results demonstrated that laminar flow protects ER stress-induced cleavage forms of PARP-1 and caspase-3. Also, laminar flow inhibits ER stress-induced $p-eIF2{\alpha}$, ATF4, CHOP, spliced XBP-1, ATF6 and JNK pathway; these effects are abrogated by pharmacological inhibition of PI3K with wortmannin. Finally, nitric oxide affects thapsigargin-induced cell death in response to laminar flow but not UPR. Taken together, these findings indicate that laminar flow inhibits UPR and ER stress-induced endothelial cell death via PI3K/Akt pathway.

Involvement of PI3K/AKT and MAPK Pathways for TNF-α Production in SiHa Cervical Mucosal Epithelial Cells Infected with Trichomonas vaginalis

  • Yang, Jung-Bo;Quan, Juan-Hua;Kim, Ye-Eun;Rhee, Yun-Ee;Kang, Byung-Hyun;Choi, In-Wook;Cha, Guang-Ho;Yuk, Jae-Min;Lee, Young-Ha
    • Parasites, Hosts and Diseases
    • /
    • 제53권4호
    • /
    • pp.371-377
    • /
    • 2015
  • Trichomonas vaginalis induces proinflammation in cervicovaginal mucosal epithelium. To investigate the signaling pathways in $TNF-{\alpha}$ production in cervical mucosal epithelium after T. vaginalis infection, the phosphorylation of PI3K/AKT and MAPK pathways were evaluated in T. vaginalis-infected SiHa cells in the presence and absence of specific inhibitors. T. vaginalis increased $TNF-{\alpha}$ production in SiHa cells, in a parasite burden-dependent and incubation time-dependent manner. In T. vaginalis-infected SiHa cells, AKT, ERK1/2, p38 MAPK, and JNK were phosphorylated from 1 hr after infection; however, the phosphorylation patterns were different from each other. After pretreatment with inhibitors of the PI3K/AKT and MAPK pathways, $TNF-{\alpha}$ production was significantly decreased compared to the control; however, $TNF-{\alpha}$ reduction patterns were different depending on the type of PI3K/MAPK inhibitors. $TNF-{\alpha}$ production was reduced in a dose-dependent manner by treatment with wortmannin and PD98059, whereas it was increased by SP600125. These data suggested that PI3K/AKT and MAPK signaling pathways are important in regulation of $TNF-{\alpha}$ production in cervical mucosal epithelial SiHa cells. However, activation patterns of each pathway were different from the types of PI3K/MAPK pathways.

Induction of apoptotic cell death in human bladder cancer cells by ethanol extract of Zanthoxylum schinifolium leaf, through ROS-dependent inactivation of the PI3K/Akt signaling pathway

  • Park, Cheol;Choi, Eun Ok;Hwangbo, Hyun;Lee, Hyesook;Jeong, Jin-Woo;Han, Min Ho;Moon, Sung-Kwon;Yun, Seok Joong;Kim, Wun-Jae;Kim, Gi-Young;Hwang, Hye-Jin;Choi, Yung Hyun
    • Nutrition Research and Practice
    • /
    • 제16권3호
    • /
    • pp.330-343
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Zanthoxylum schinifolium is traditionally used as a spice for cooking in East Asian countries. This study was undertaken to evaluate the anti-proliferative potential of ethanol extracts of Z. schinifolium leaves (EEZS) against human bladder cancer T24 cells. MATERIALS/METHODS: Subsequent to measuring the cytotoxicity of EEZS, the anti-cancer activity was measured by assessing apoptosis induction, reactive oxygen species (ROS) generation, and mitochondrial membrane potential (MMP). In addition, we determined the underlying mechanism of EEZS-induced apoptosis through various assays, including Western blot analysis. RESULTS: EEZS treatment concentration-dependently inhibited T24 cell survival, which is associated with apoptosis induction. Exposure to EEZS induced the expression of Fas and Fas-ligand, activated caspases, and subsequently resulted to cleavage of poly (ADP-ribose) polymerase. EEZS also enhanced the expression of cytochrome c in the cytoplasm by suppressing MMP, following increase in the ratio of Bax:Bcl-2 expression and truncation of Bid. However, EEZS-mediated growth inhibition and apoptosis were significantly diminished by a pan-caspase inhibitor. Moreover, EEZS inhibited activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway, and the apoptosis-inducing potential of EEZS was promoted in the presence of PI3K/Akt inhibitor. In addition, EEZS enhanced the production of ROS, whereas N-acetyl cysteine (NAC), a ROS scavenger, markedly suppressed growth inhibition and inactivation of the PI3K/Akt signaling pathway induced by EEZS. Furthermore, NAC significantly attenuated the EEZS-induced apoptosis and reduction of cell viability. CONCLUSIONS: Taken together, our results indicate that exposure to EEZS exhibits anti-cancer activity in T24 bladder cancer cells through ROS-dependent induction of apoptosis and inactivation of the PI3K/Akt signaling pathway.

당목향 뿌리 추출물의 인체 모유두세포 증식 및 모발 성장 관련 신호전달에 미치는 영향 (Effect of Saussurea Lappa Root Extract on Proliferation and Hair Growth-related Signal Pathway in Human Hair Follicle Dermal Papilla Cells)

  • 최형철;정노희
    • 공업화학
    • /
    • 제32권6호
    • /
    • pp.647-652
    • /
    • 2021
  • 본 연구에서는 에탄올과 노말헥산을 이용하여 당목향 뿌리 추출물을 제조하고, 인체 모유두세포의 세포증식 및 모발성장 관련 신호전달에 미치는 영향을 평가하였다. 당목향 뿌리 추출물의 세포증식 효과는 MTT assay를 실시하였으며, ERK, Akt, Wnt/𝛽-catenin 신호 경로, 5𝛼-reductase의 발현을 western blot 분석을 통해 측정하였다. 당목향 뿌리 추출물은 인체 모유두세포의 증식을 유의하게 증가시켰고, 세포증식에 관여하는 ERK와 Akt의 인산화를 촉진하였으며, 당목향 뿌리 추출물에 의해 증가된 ERK, Akt 인산화 촉진과 세포증식은 MEK/ERK 억제제 PD98059와 PI3K/Akt 억제제 LY294002에 의해 유의하게 감소되었다. 또한 당목향 뿌리 추출물은 GSK-3𝛽 (Ser9)의 인산화를 통한 𝛽-catenin(Ser552, 675)의 인산화를 촉진함으로써 핵 내의 𝛽-catenin 축적을 유도하였고, 5𝛼-reductase type I, II의 활성을 억제하였다. 종합적으로 당목향 뿌리 추출물은 모유두세포의 ERK, Akt 경로의 활성화를 통해 세포의 증식을 유도하며, 𝛽-catenin 신호 경로 활성화 및 5𝛼-reductase 활성 억제를 통해 탈모 예방 및 모발 성장 효과를 나타냄으로써 헤어케어제품의 소재로 응용가능성이 있음을 시사한다.