• 제목/요약/키워드: PI3 kinase gamma

검색결과 25건 처리시간 0.036초

Development of screening systems for modulators on phospholipase-mediated signal transduction

  • Lee, Young-Han-;Min, Do-Sik;Kim, Jae-Ho-;Suh, Pann-Ghill;Ryu, Sung-Ho
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1994년도 춘계학술대회 and 제3회 신약개발 연구발표회
    • /
    • pp.186-186
    • /
    • 1994
  • Many agonists have been known to activate the hydrolysis of membrane phospholipids through the bindings with corresponding receptors on the various cells. Diacylglycerol and inositol 1,4,5-trisphosphate(IP3) generated by the action of phosphoinositide-specific phospholipase C (PI-PLC) are well known second messengers for the activation of protein kinase C and the mobilization of Ca2+ in many cells. Three types of PI-PLC isozyme (${\alpha}$,${\gamma}$, and $\delta$) and several subtrpes for each type have been identified from mammalian sources by purification of enzymes and cloning of their cDNAs. Each type PI-PLC isozyme is coupled to different receptors and mediators, for example, ${\beta}$-types are coupled to the seven-transmembrane-receptors via Gq family of G-proteins and ${\beta}$-types directly to the receptor tyrosine kinases. Specific modulators for the signaling pathway through each type of PI-PLC should be very useful as potential potential candidates for lend substances in developing novel drugs. To establish the sensitive and convenient screening systems for searching modulators on PI-PLC mediated signaling, two kinds of approaches have been tried. (1) Establishment of in vitro assay condition for each type of PI-PLC isozyme: Overexpression by using vaccinia virus and purification of each isozyme was carried out for the preparation of large amounts of enaymes. Optimum and sensitive assay condition for the measurements of PI-ELC activities were established. (2) Development of the cell lines in which each type of PI-PLC is permanently overexpressed: A fibroblast cell line (3T3${\gamma}$1-7) in which PI-PLC-${\gamma}$1 was overexpressed by using pZip-neo expression vector was developed and used for the measurement of PDGF-induced IP3 formation. The responses for IP3 formed in 3T3${\gamma}$1-7 cells by the treatment of PDGF is 8 times more sensitive than those in control cells. 3T3${\gamma}$l-7 cell is useful for the screening of the inhibitors on the PDGF-induced cellular responses from large number of samples in a small volume(50 ${\mu}$l) and short time(5-15 min). Using these systems, we screened hundreds of herb-extracts for the inhibition of PDGF-induced IP3 formation and selected several extracts that showed the inhibition as the candidates for isolation and characterization of active substances. The determination of the acting point of selected extracts or fractions in the PDGF signaling pathway has been analyzing.

  • PDF

PI3K, Akt, p38을 포함한 인산화단백질에 대한 Cordycepin의 억제효과 (The Inhibitory Effects of Cordycepin on Phosphoproteins including PI3K, Akt, and p38)

  • 권혁우;이동하
    • 대한임상검사과학회지
    • /
    • 제49권2호
    • /
    • pp.99-107
    • /
    • 2017
  • 진균 속에 속하는 종인 Cordyceps는 중국의 전통약제로서, 그 유효성분인 cordycepin이 혈소판 응집에 관여한다는 보고가 있지만 phosphoprotein 조절에 관련된 연구는 미흡하다. 본 연구에서는, cordycepin이 fibrinogen binding에 관여한다고 알려진 PI3k/Akt와 $TXA_2$ 분비 및 과립방출에 관여한다고 알려진 p38와 같은 phosphoprotein의 인산화를 어떻게 조절하며 혈소판응집을 억제시키는지 규명하고자 하였다. 그 결과, cordycepin가 $261.1{\mu}M$$IC_{50}$으로 collagen이 유도한 혈소판 응집을 강력하게 억제하였고, PI3K와 Akt의 인산화를 감소시키며 ${\alpha}IIb/{\beta}_3$에 대한 fibrinogen 결합을 농도의존적으로 억제하였다. 또한, cordycepin은 collagen이 촉진시킨 p38의 인산화를 억제함으로써, 과립방출의 지표인 ATP 과 serotonin의 방출을 억제하였고 COX-1과 TXAS의 활성 및 $PLC-{\gamma}_2$ 인산화에 대한 영향없이 $TXA_2$ 생성량을 감소시켰다. 따라서, cordycepin은 PI3K/Akt, p38와 같은 phosphoprotein의 인산화를 억제함으로써 혈소판 응집억제를 나타내는 항혈전 치료 및 예방약물로서 유용한 가치가 있다고 여겨진다.

Activation Of p21-Activated Kinase1 Is Required For Autotaxin-Induced Focal Adhesion Kinase Phosphorylation and Cell Motility in A2058 cells

  • Jung, In-Duk;Lee, Jang-Soon;Yun, Seong-Young;Park, Jun-Hong;Park, Chang-Gyo;Lee, Hoi-Young
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.166.1-166.1
    • /
    • 2003
  • Autotaxin (ATX) is a 125-kDa glycoprotein and a strong motogen that can increase invasiveness and angiogenesis, originally isolated from the conditioned medium of human melanoma A2058 cells. And it is a strong. Recently, we suggested that ATX promotes motility via G protein-coupled PI3K$\gamma$, and Cdc42/Racl are essential for ATX-induced tumor cell motility in A2058 melanoma cells. In the present study, we found that activation of p21-activated kinase1 (PAK1) was required for ATX-induced cell motility. (omitted)

  • PDF

PBT-6, a Novel PI3KC2γ Inhibitor in Rheumatoid Arthritis

  • Kim, Juyoung;Jung, Kyung Hee;Yoo, Jaeho;Park, Jung Hee;Yan, Hong Hua;Fang, Zhenghuan;Lim, Joo Han;Kwon, Seong-Ryul;Kim, Myung Ku;Park, Hyun-Ju;Hong, Soon-Sun
    • Biomolecules & Therapeutics
    • /
    • 제28권2호
    • /
    • pp.172-183
    • /
    • 2020
  • Phosphoinositide 3-kinase (PI3K) is considered as a promising therapeutic target for rheumatoid arthritis (RA) because of its involvement in inflammatory processes. However, limited studies have reported the involvement of PI3KC2γ in RA, and the underlying mechanism remains largely unknown. Therefore, we investigated the role of PI3KC2γ as a novel therapeutic target for RA and the effect of its selective inhibitor, PBT-6. In this study, we observed that PI3KC2γ was markedly increased in the synovial fluid and tissue as well as the PBMCs of patients with RA. PBT-6, a novel PI3KC2γ inhibitor, decreased the cell growth of TNF-mediated synovial fibroblasts and LPS-mediated macrophages. Furthermore, PBT-6 inhibited the PI3KC2γ expression and PI3K/AKT signaling pathway in both synovial fibroblasts and macrophages. In addition, PBT-6 suppressed macrophage migration via CCL2 and osteoclastogenesis. In CIA mice, it significantly inhibited the progression and development of RA by decreasing arthritis scores and paw swelling. Three-dimensional micro-computed tomography confirmed that PBT-6 enhanced the joint structures in CIA mice. Taken together, our findings suggest that PI3KC2γ is a therapeutic target for RA, and PBT-6 could be developed as a novel PI3KC2γ inhibitor to target inflammatory diseases including RA.

Differential regulation of phospholipase $C\gamma$ isoforms through Fc$\varepsilon$RI, high affinity IgE receptor

  • Yoon, Eung-Joo;Beom, Sun-Ryeo;Kim, Kyeong-Man
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.93.3-94
    • /
    • 2003
  • The signaling components of high affinity IgE receptor (Fc RI) were searched by yeast-hybrid screening of the cDNA library constructed from RBL-2H3 cells. The cytoplasmic part of the Fc RI- chain was found to specifically interact with PLC 2, and further comparatives studies were conducted focusing on the differential regulation of two PLC- isoforms through Fc RI. The inhibitors of Src, Syk, and protein kinase C similarly affected the tyrosine phosporylations of PLC 1 and PLC 2 but the inhibitors of PI3-kinase and p42/44 ERK effectively inhibited the activation of PLC 1 but not PLC 2. (omitted)

  • PDF

Involvement of Cytosolic Phospholipase $A_2$ in Nerve Growth Factor-Mediated Neurite Outgrowth of PC12 Cells

  • Choi, Soon-Wook;Yu, Eun-Ah;Lee, Young-Seek;Yoo, Young-Sook
    • BMB Reports
    • /
    • 제33권6호
    • /
    • pp.525-530
    • /
    • 2000
  • The nerve growth factor (NGF) induces neuronal differentiation and neurite outgrowth of PC12 cells, whereas epidermal growth factors (EGF) stimulate growth and proliferation of the cells. In spite of this difference, NGF-or EGF-treated PC12 cells share various properties in cellular-signaling pathways. These include the activation of the phosphoinositide (PI)-3 kinase, 70 kDa S6 kinase, and in the mitogen-activated protein (MAP) kinase pathway, following the binding of these growth factors to intrinsic receptor tyrosine kinases (RTKs). Therefore, many studies have been attempted to access the critical signaling events in determining the differentiation and proliferation of PC12 cells. In this study, we investigated the cytosolic phospholipase $A_2$ ($cPLA_2$) in neurite behavior in order to identify the differences of signaling pathways between the NGF-induced differentiation and the EGF-induced proliferation of PC12 cells. We have showed here that the $cPLA_2$ was translocated from cytosol to membrane only in NGF-treated cells. We also demonstrated that this translocation is associated with NGF-induced activation of phospholipase $C-{\gamma}(PLC-{\gamma})$, which elevates intracellular $Ca^{2+}$ concentration. These results reveal that the translocation of $cPLA_2$ may be a requisite event in the neuronal differentiation of PC12 cells. Various phospholipase inhibitors were used to confirm the importance of these enzymes in the differentiation of PC12 cells. Neomycin B, a PLC inhibitor, dramatically inhibited the neurite outgrowth, and two distinct $PLA_2$ inhibitors, 4-bromophenacyl bromide (BPB) and arachidonyltrifluoro-methyl ketone ($AACOCF_3$) also suppressed the neurite outgrowth of the cells, as well Taken together, these data indicated that $cPLA_2$ is involved in NGF-induced neuronal differentiation and neurite outgrowth of PC12 cells.

  • PDF

Insulin Inhibits the Expression of Adiponectin and AdipoR2 mRNA in Cultured Bovine Adipocytes

  • Sun, Y.G.;Zan, L.S.;Wang, H.B.;Guo, H.F.;Yang, D.P.;Zhao, X.L.;Gui, L.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권10호
    • /
    • pp.1429-1436
    • /
    • 2009
  • Adiponectin is an adipocyte-derived protein that has a regulatory role in energy homeostasis and influences insulin sensitivity. Its effects on glucose utilization and lipid metabolism are mediated by AdipoR1 and AdipoR2. How insulin affects adiponectin gene expression and secretion is still controversial. This study was conducted to determine the expression of adiponectin, AdipRs and $PPAR-\gamma$ during the differentiation of bovine preadipocytes and the effect of insulin on expression of these genes in bovine adipocytes. The bovine preadipocytes started to accumulate lipids three days after differentiation was induced, with increased expression of adiponectin, AdipoR2 and $PPAR-\gamma$ mRNAs. Insulin decreased the expression of adiponectin mRNA in a dose- and time-dependent fashion, and the inhibition was detectable at insulin concentrations as low as 10 nM and as early as 2 h after addition of 100 nM insulin. Insulin also inhibited the expression of AdipoR2 mRNA at concentrations from 1 to 1,000 nM or 24 h after addition of 100 nM insulin, but did not affect the expression of AdipoR1 in bovine adipocytes. Inhibition of PI3K with LY294002 reversed the inhibition of adiponectin and AdipoR2 mRNA expression by insulin. These results suggest that insulin suppresses the expression of adiponectin and AdipoR2 at least partially via the PI3K signal pathway.

Inhibition of Adipocyte Differentiation by MeOH Extract from Carduus crispus through ERK and p38 MAPK Pathways

  • Lee, Eun-Jeong;Joo, Eun-Ji;Hong, Yoo-Na;Kim, Yeong-Shik
    • Natural Product Sciences
    • /
    • 제17권4호
    • /
    • pp.273-278
    • /
    • 2011
  • In this study, the effects of a methanol (MeOH) extract of Carduus crispus L. (Asteraceae) on adipogenesis was investigated in 3T3-L1 cells. To differentiate preadipocytes to adipocytes, confluent 3T3-L1 preadipocytes were treated with a hormone mixture, which included isobutylmethylxanthine, dexamethasone, and insulin (MDI). The methanol extract of C. crispus significantly decreased fat accumulation by inhibiting adipogenic signal transcriptional factors in MDI-induced 3T3-L1 cells in a dose-dependent manner. In MTT assays and on PI-staining, methanol extract of C. crispus inhibited the proliferation of 3T3-L1 cells during mitotic clonal expansion (MCE). The anti-adipogenic effect of the Carduus extract seemed to be associated with the upregulation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) pathways within the first 2 days after MDI treatment. These results suggest that methanol extract of C. crispus might be beneficial for the treatment of obesity.

Phospholipase Cγ의 생리적 기능과 질병과 연관된 돌연변이 (Physiological Roles of Phospholipase Cγ and Its Mutations in Human Disease)

  • 장현준;최장현;장종수
    • 생명과학회지
    • /
    • 제30권9호
    • /
    • pp.826-833
    • /
    • 2020
  • Phospholipase C gamma (PLCγ)는 phosphatidylinositol을 가수분해하여 신호전달 과정에 참여하는 PLC의 주요한 isotype으로 γ-specific array의 특징적인 구조를 바탕으로 receptor tyrosine kinases 및 non-receptor tyrosine kinase 신호를 주로 매개한다. PLCγ1과 PLCγ2의 두 isozyme이 존재하며 다양한 세포에서 발현하여 cell proliferation, migration 및 differentiation 등 여러 세포작용을 조절하고 있다. 최근의 연구들에서 PLCγ 돌연변이가 cancer와 immune disease 및 brain disorder 등에 연관된다는 것이 밝혀지고 있으며 genetic model을 통해 PLCγ의 생리적·병리적 기능이 제시되었다. 본 리뷰에서는 최신의 연구 결과들을 바탕으로 PLCγ의 구조와 활성 조절 기전에 대해 기술하고 나아가 여러 질병의 발병과 진행에서 보고된 PLCγ의 돌연변이와 knockout 마우스를 활용한 연구 결과를 바탕으로 생리적·병리적 관점에서 PLCγ의 역할에 대해 고찰하였다.

Short Heterodimer Partner as a Regulator in OxLDL-induced Signaling Pathway

  • Kimpak, Young-Mi
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2001년도 Proceedings of International Convention of the Pharmaceutical Society of Korea
    • /
    • pp.109-113
    • /
    • 2001
  • Oxidized low-density lipoprotein (oxLDL) has been shown to modulate transactivations by the peroxisome proliferator activated receptor (PPAR)$\gamma$ and nuclear factor-kappa B (NF$\kappa$B). In this study, the oxLDL signaling pathways involved with the NF$\kappa$B transactivation were investigated by utilizing a reporter construct driven by three upstream NF$\kappa$B binding sites, and various pharmacological inhibitors. OxLDL and its constituent lysophophatidylcholine (lysoPC) induced a rapid and transient increase of intracellular calcium and stimulated the NF-KB transactivation in resting RAW264.7 macrophage cells in an oxidation-dependent manner. The NF$\kappa$B activation by oxLDL or lysoPC was inhibited by protein kinase C inhibitors or an intracellular calcium chelator. Tyrosine kinase or PI3 kinase inhibitors did not block the NF$\kappa$B transactivation. Furthermore, the oxLDL-induced NF$\kappa$B activity was abolished by the PPAR$\gamma$ ligands. When the endocytosis of oxLDL was blocked by cytochalasin B, the NF$\kappa$B transactivation by oxLDL was synergistically increased, while PPAR transactivation was blocked. These results suggest that oxLDL activates NF-$\kappa$B in resting macrophages via protein kinase C- and/or calcium-dependent pathways, which does not involve the endocytic processing of oxLDL. The endocytosis-dependent PPAR$\gamma$ activation by oxLDL may function as an inactivation route of the oxLDL induced NF$\kappa$B signal. Short heterodimer partner (SHP), specifically expressed in liver and a limited number of other tissues, is an unusual orphan nuclear receptor that lacks the conventional DNA-binding domain. In this work, we found that SHP expression is abundant in murine macrophage cell line RAW 264.7 but suppressed by oxLDL and its constituent I3-HODE, a ligand for peroxisome proliferator-activated receptor y. Furthermore, SHP acted as a transcription coactivator of nuclear factor-$\kappa$B (NF$\kappa$B) and was essential for the previously described NF$\kappa$B transactivation by lysoPC, one of the oxLDL constituents. Accordingly, NF$\kappa$B, transcriptionally active in the beginning, became progressively inert in oxLDL-treated RAW 264.7 cells, as oxLDL decreased the SHP expression. Thus, SHP appears to be an important modulatory component to regulate the transcriptional activities of NF$\kappa$B in oxLDL-treated, resting macrophage cells.

  • PDF