• Title/Summary/Keyword: PI-type state feedback control

Search Result 13, Processing Time 0.023 seconds

Stabilization Control of Inverted Pendulum Systems Using a State Observer (상태관측기를 이용한 도립진자 시스템의 안정화 제어)

  • Lee, Yun-Hyung;Ahn, Jong-Kap;Kim, Min-Jeong;So, Myung-Ok;Jin, Gang-Gyoo
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.49-50
    • /
    • 2005
  • This paper presents a scheme for state observer-based stabilization control of inverted pendulum systems. The feedback gain matrices of both the state feedback controller and the state observer are obtained by a real-coded genetic algorithm(RCGA) such that the given performances indices are minimized.

  • PDF

LPD(Linear Parameter Dependent) System Modeling and Control of Mobile Soccer Robot

  • Kang, Jin-Shik;Rhim, Chul-Woo
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.243-251
    • /
    • 2003
  • In this paper, a new model for mobile soccer robot, a type of linear system, is presented. A controller, consisting of two loops the one of which is the inner state feedback loop designed for stability and plant be well conditioned and the outer loop is a well-known PI controller designed for tracking the reference input, is suggested. Because the plant, the soccer robot, is parameter dependent, it requires the controller to be insensitive to the parameter variation. To achieve this objective, the pole-sensitivity as a pole-variation with respect to the parameter variation is defined and design algorithms for state-feedback controllers are suggested, consisting of two matrices one of which is for general pole-placement and other for parameter insensitive. This paper shows that the PI controller is equivalent to the state feedback and the cost function for reference tracking is equivalent to the LQ cost. By using these properties, we suggest a tuning procedure for the PI controller. We that the control algorithm in this paper, based on the linear system theory, is well work by simulation, and the LPD system modeling and control are more easy treatment for soccer robot.

Control of Inverted Pendulum Systems Using a State Observer (상태관측기를 이용한 도립진자 시스템의 제어)

  • Lee, Yun-Hyung;Ahn, Jong-Kap;Jin, Gang-Gyoo;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.462-467
    • /
    • 2007
  • The design and synthesis of a state feedback controller assumes the feedback of all state variables of the system. However, some state variables are not physical quantifies so that sensors may not be available, or may be too expensive to measure. Hence, a state observer can be an alternative to estimate unmeasurable state variables. This paper therefore presents a scheme for state observer-based stabilization control of inverted pendulum systems. The feedback gain matrices of both the state feedback controller and the state observer are tuned by real-coded genetic algorithms(RCGAs) such that the given performance indices are minimized. The proposed method is demonstrated through simulations.

A PI-type State Feedback Control of Seesaw System Using Reduced-order Observer (축소차수 관측기를 이용한 시소시스템의 Pl형 상태피드백 제어)

  • Ryu, Ki-Tak;Lee, Yun-Hyung;Yoo, Heui-Han;Jung, Byung-Gun;Kim, Jong-Su;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.31 no.10
    • /
    • pp.853-858
    • /
    • 2007
  • In this paper, a seesaw system composed with a moving cart on the rail and seesaw frame is made to demonstrate the effectiveness of the control theory. The control aim is to maintain an equilibrium of seesaw frame in spite of various initial conditions and an allowable disturbance. To solve this control problem, a PI-type state feedback controller using reduced-order observer is implemented and applied to the seesaw system. The reduced-order observer can be used to estimate the state variables in the case of the limit of sensor number or the constraint on setting sensors and the cost. A series of simulation are carried out to verify the effectiveness of the control system.

Robust PI controller design using LQ-servo (LQ-servo를 이용한 강인한 PI제어기 설계)

  • 이동영;윤성오;서병설
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.577-580
    • /
    • 1996
  • LQ-servo is a stability-robustness guaranteed multivariable controller design method based on the LQR structure to improve command following performance with output feedback. In this paper, a new type of PI controller based on LQ-servo is introduced. Then, Command following performance is improved using the limiting behavior of the control gain and weighting factors on the low frequency part of design parameter Q that is the state weighting matrix in the cost function.

  • PDF

Swing-up and Stabilization Control of a SESIP System (SESIP 시스템의 스윙업과 안정화 제어)

  • So, Myung-Ok;Yoo, Heui-Han;Ryu, Ki-Tak;Lee, Yun-Hyung;Lee, Jong-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.310-317
    • /
    • 2010
  • In this paper, we propose a method for swing-up and stabilization of a SESIP(Self-Erecting Single Inverted Pendulum) system which is one of the typical nonlinear systems. We use PV(Proportional velocity) controller for swinging up the pendulum and employ a PI-type state-feedback controller for stabilizing the pendulum. Control is switched to a stabilizing controller, which is designed to balance the inverted position of pendulum and the cart position to the near vertical position. Computer simulations are performed to illustrate the control performance of the proposed scheme.

RCGA-Based State Feedback Control for Seesaw Systems (시소 시스템을 위한 RCGA 기반의 상태피드백 제어)

  • Ryu, Ki-Tak;So, Myung-Ok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.307-308
    • /
    • 2007
  • In general, most physical systems are complex, highly non-linearity, affected by disturbance, incomplete knowledge, and even interactive change with the operating points. To solve this problem, the research of modem control theory and controller is proceeding. Before appling the proposed controller to the real system, however, it needs an apparatus which can verify the proposed controller for being not damaged the plant. In this paper, therefore, a RCGA-based PI-type state feedback controller using reduced-order observer is implemented and applied to the seesaw system and a series of simulation are carried out to verify the effectiveness of the control system.

  • PDF

Fuzzy Modeling and Control of Differential Driving Wheeled Mobile Robot: To Achieve Performance Objective

  • Kang, Jin-Shig
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.166-172
    • /
    • 2003
  • The dynamics of the DDWMR depends on the velocity difference of the two driving wheels. And which is known as a type of non-holonomic equation. By this reason, the treatment of DDWMR had become difficult and conservative. In this paper, the differential-driving wheeled mobile robot is considered. The Takaki-Surgeno fuzzy model and a control method for DDWMR is presented. The suggested controller has three control elements. The first element is fuzzy state feedback designed for eliminating the dependence of time-varying parameter. The second element is weighting controller which is designed for good frequency response. The third controller is PI-controller which is designed for good command following and robustness with un-modeled dynamics. In order for achieving the performance objective, the design of controller is based on the loop-shaping algorithm.

Decentralized $H_{\infty}$ Control of Multiple Magnetic Levitation System (다중 자기부상 시스템의 분산형 $H_{\infty}$ 제어)

  • Kim Jong-Moon;Lee Sang-Hyuk;Choi Young-Kiu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.12
    • /
    • pp.689-697
    • /
    • 2005
  • In this paper, an application of a decentralized $H_{\infty}$ controller(DHC) to multiple controlled-permanent magnet(CMAG) magnetic levitation(Maglev) systems is presented. The designed DHC using two Riccati equations iteratively has simpler structure and needs less computational loads than conventional centralized $H_{\infty}$ controller. A target plant is a hybrid-type CMAG system with permanent magnet and coil, and its mathematical model is firstly derived to design the DHC. To implement the designed algorithm, a real Maglev vehicle system including digital controller, chopper, sensor, etc., is manufactured. To compare the performances of the DHC method with an observer-based state feedback control(OSFC), the input tracking and disturbance rejection characteristics are experimentally tested. As performance indices(PI), integral of squared error(ISE), integral of absolute error(IAE), integral of time multiplied by absolute error(ITAE) and integral of time multiplied by squared error(ITSE) are used. From the experimental results, it can be seen that the input tracking and disturbance rejection performances of the DHC are better than those of the conventional controller.

Experimental Data based-Parameter Estimation and Control for Container Crane (실험적 데이터 기반의 컨테이너 크레인 파라미터 추정 및 제어)

  • Lee, Yun-Hyung;Jin, Gang-Gyoo;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.32 no.5
    • /
    • pp.379-385
    • /
    • 2008
  • In this paper, we presents a scheme for the parameter estimation and optimal control scheme for apparatus of container crane system. For parameter estimation, first, we construct the open loop of the container crane system and estimate its parameters based on input-output data, a real-coded genetic algorithm(RCGA) and the model adjustment technique. The RCGA plays an important role in parameter estimation as an adaptive mechanism. For controller design, state feedback gain matrix is searched by another RCGA and the estimated model. The performance of the proposed methods are demonstrated through a set of simulation and experiments of the experimental apparatus.