• Title/Summary/Keyword: PI current controller

Search Result 335, Processing Time 0.024 seconds

Anti-windup for Complex Vector Synchronous Frame PI Current Controller (복소 벡터 동기좌표계 비례 적분 전류 제어기의 안티와인드업 이득 설정)

  • Yoo, Hyun-Jae;Jeong, Yu-Seok;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.404-408
    • /
    • 2006
  • This paper presents an anti-windup gain selection method for a complex vector synchronous frame PI current controller. The complex vector PI current controller is more robust to the parameter variation than the state feedback decoupling PI current controller. The complex vector PI current controller also includes an integral term, which can results in windup problem when the controller is saturated due to physical limitation of the system. Furthermore, even an anti-windup is utilized, inappropriate gain can deteriorate the performance of the current controller. Therefore, appropriate anti-windup gain selection method for a complex vector current controller has been proposed based on the mathematical description of the current control system. The superior performance of the current control system with the proposed anti-windup gain has been verified by the experimental results.

High Performance PI Current Controller for a Switched Reluctance Motor

  • Ashoornejad, A.;Rashidi, A.;Saghaeian-nejad, S.M.;Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.367-373
    • /
    • 2014
  • The most common current controller for the Switched Reluctance Motor (SRM) is the hysteresis controller. This method, however, suffers from such drawbacks as variable switching frequency, consequent audible noise and high current ripple. These disadvantages make this controlling method undesirable for many applications. The alternative solution is the PI controller. Since the fixed gain PI current controller can only be optimized for one operating point, and on the other hand, SR motor is highly nonlinear, PI controller gain should be adjusted according to incremental inductance. This paper presents a novel method for PI current controller gain adaptation which is simple and yields a good performance. The proposed controller has been implemented on a test bench using a eZdsp F28335 board. The performance of the current controller has been investigated in both simulation and experimental tests using a four-phase 8/6 4KW SRM drive system.

High Performance Control of IPMSM Drive using Dual PI Controller (Dual PI 제어기를 이용한 IPMSM 드라이브의 고성능 제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Kim, Do-Yeon;Jung, Byung-Jin;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.105-110
    • /
    • 2008
  • This Paper proposes Dual-PI controller for high performance control of IPMSM drive. Input of traditional PI control used speed error, but Dual-PI controller used two input speed error, current error and output is output is f-axis current. Dual-PI controller is Possible both speed control and current control because it used speed error and current error Therefore, dual-PI controller can is reduced current ripple. This paper is made analysis performance of algorithm and proposes result.

  • PDF

A Novel Utilization Method of the Predicted Current in the High Performance PI Current Controller with a Control time delay (제어 시지연이 있는 고성능 PI 전류제어기에 대한 예측전류의 적용방법)

  • Lee, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.426-430
    • /
    • 2006
  • This paper deals with a novel utilization method of the predicted current in the high performance PI current controller with a control time delay. The inevitable error of the predicted current in the linear servo drive using a permanent magnet linear synchronous motor is analyzed and a modified cross-coupling decoupling synchronous frame PI current controller is proposed in order to improve the current control response under both the control time delay and the inevitable current prediction error. Simulation and experimental results show that the proposed current controller has an improved current control performance under both the control time delay and the inevitable current prediction error in the servo drive system.

Comparative Study of PI, Fuzzy and Fuzzy tuned PI Controllers for Single-Phase AC-DC Three-Level Converter

  • Gnanavadivel, J;Senthil Kumar, N;Yogalakshmi, P
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.78-90
    • /
    • 2017
  • This paper presents the design of closed loop controllers operating a single-phase AC-DC three-level converter for improving power quality at AC mains. Closed loop inhibits outer voltage controller and inner current controller. Simulations of three level converter with three different voltage and current controller combinations such as PI-Hysteresis, Fuzzy-Hysteresis and Fuzzy tuned PI-Hysteresis are carried out in MATLAB/Simulink. Performance parameters such as input power factor and source current total harmonic distortion (THD) are considered for comparison of the three controller combinations. The fuzzy-tuned PI voltage controller with hysteresis current controller combination provides a better result, with a source-current THD of 0.93% and unity power factor without any source side filter for the three level converter. For load variations of 25% to 100%, a THD of less than 5% is obtained with a maximum value of only 1.67%. Finally, the fuzzy-tuned PI voltage with hysteresis controller combination is implemented in a Xilinx Spartan-6 XC6SLX25 FPGA board for experimental validation of power quality enhancement. A prototype 100 W, 0-24-48 V as output converter is considered for the testing of controller performance. A source-current THD of 1.351% is obtained in the experimental study with a power factor near unity. For load variations of 25% to 100%, the THD is found to be less than 5%, with a maximum value of only 2.698% in the experimental setup which matches with the simulation results.

A Hysteresis & PI Current Controller Response Characteristic of SRM (스위치드 릴럭턴스 전동기의 히스테리시스 및 PI 전류제어기 응답특성)

  • Kim, Dong-Hee;Baik, Won-Sik;Kim, Min-Huei
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.25-31
    • /
    • 2007
  • This paper presents a comparison of different current controller response characteristics of SRM. The most common current controllers of the SRM is hysteresis type. The hysteresis controller is easy to implement and fast current control response, but has the inherent disadvantage of switching frequency variations. The other common type of current controller is PI scheme. The design of a classical PI current controller with fixed parameters for SRM is not an easy task due to the extreme nonlinear characteristics. In this paper, some linearization technique is used for design of PI current controller. Experimental results of 1-hp SRM are presented for the basic reference data which can be used to select the proper current control scheme according to the applications.

Design of a Surface-Mounted PMSM Current Controller Using Uncertainty Estimation with a PI Observer (PI 관측기의 불확실성 추정을 이용한 표면부착형 영구자석 동기기의 전류 제어기 설계)

  • Kim, In-Hyuk;Choi, Dae-Sik;Son, Young-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.1011-1016
    • /
    • 2011
  • This paper presents a robust current controller for a surface-mounted permanent magnet synchronous motor(SPMSM) by using a PI observer. The decoupling PI(proportional-integral) controller combined with an additional feed-forward compensation has been used for the current controller. The classical feed-forward compensation using velocity information and system parameters is not expected to achieve a robust performance against parameter uncertainties. This paper has adopted a PI observer for the feed-forward compensation to cope with parameter uncertainties without using velocity information. A simple PI observer has been designed to compensate the disturbances that represent velocity coupled terms and parameter uncertainties. Experimental results as well as computer simulations with 630W SPMSM confirm that the proposed approach can deal with the effects of the disturbance and improve the control performance.

A method of utilizing the predicted current in the high performance PI current controller with a control time delay (제어 시지연이 있는 고성능 PI 전류제어기에 대한 예측전류의 적용방법)

  • Lee Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.1-3
    • /
    • 2006
  • This paper deals with a novel utilization method of the predicted current in the high performance PI current controller with a control time delay. The inevitable error of the predicted current in the linear servo drive using a permanent magnet linear synchronous motor is analyzed and a modified cross-coupling decoupling synchronous frame PI current controller is proposed in order to improve the current control response under the control time delay. Simulation and experimental results show that the proposed current controller has an improved current control performance under both the electrical uncertainties of a servo drive system and the control time delay.

  • PDF

Current Control of Switched Reluctance Motor Using Self-tuning Fuzzy Controller (자기동조 퍼지 제어기를 이용한 스위치드 릴럭턴스 모터의 전류제어)

  • Lee, Young-Soo;Kim, Jaehyuck;Oh, Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.473-479
    • /
    • 2016
  • This paper describes an accurate and stable current control method of switched reluctance motors(SRMs), which have recently attracted considerable wide attention owing to their favorable features, such as high performance, high durability, structural simplicity, low cost, etc. In most cases, the PI controllers(PICC) have been used mostly for the current control of electric motors because their algorithm and selection of controller gain are relatively simpler compared to other controllers. On the other hand, the PI controller requires an adjustment of the controller gains for each operating point when nonlinear system parameters change rapidly. This paper presents a stable current control method of an SRM using self-tuning fuzzy current controller(STFCC) under nonlinear parameter variation. The performance of the considered method is validated via a dynamic simulation of the current controlled SRM drive using Matlab/Simulink program.

Genetically optimized self-tuning Fuzzy-PI controller for HVDC system (HVDC 시스템을 위한 진화론적으로 최적화된 자기 동조 퍼지제어기)

  • Wang, Zhong-Xian;Yang, Jueng-Je;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.279-281
    • /
    • 2006
  • In this paper, we study an approach to design a self-tuning Fuzzy-PI controller in HVDC(High Voltage Direct Current) system. In the rectifier of conversional HVDC system, turning on, turning off, triggering and protections of thyristors have lots of problems that can make the dynamic instability and cannot damp the dynamic disturbance efficiently. The above problems are solved by adapting Fuzzy-PI controller for the fire angle control of rectifier.[7] The performance of the Fuzzy-PI controller is sensitive to the variety of scaling factors. The design procedure dwells on the use of evolutionary computing(Genetic Algorithms, GAs). Then we can obtain the optimal scaling factors of the Fuzzy-PI controller by Genetic Algorithms. In order to improve Fuzzy-PI controller, we adopt FIS to tune the scaling factors of the Fuzzy-PI controller on line. A comparative study has been performed between Fuzzy-PI and self-tuning Fuzzy-PI controller, to prove the superiority of the proposed scheme.

  • PDF