• 제목/요약/키워드: PI controllers

검색결과 242건 처리시간 0.025초

Multiobjective PI/PID Control Design Using an Iterative Linear Matrix Inequalities Algorithm

  • Bevrani, Hassan;Hiyama, Takashi
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권2호
    • /
    • pp.117-127
    • /
    • 2007
  • Many real world control systems usually track several control objectives, simultaneously. At the moment, it is desirable to meet all specified goals using the controllers with simple structures like as proportional-integral (PI) and proportional-integral-derivative (PID) which are very useful in industry applications. Since in practice, these controllers are commonly tuned based on classical or trial-and-error approaches, they are incapable of obtaining good dynamical performance to capture all design objectives and specifications. This paper addresses a new method to bridge the gap between the power of optimal multiobjective control and PI/PID industrial controls. First the PI/PID control problem is reduced to a static output feedback control synthesis through the mixed $H_2/H_{\infty}$ control technique, and then the control parameters are easily carried out using an iterative linear matrix inequalities (ILMI) algorithm. Numerical examples on load-frequency control (LFC) and power system stabilizer (PSS) designs are given to illustrate the proposed methodology. The results are compared with genetic algorithm (GA) based multiobjective control and LMI based full order mixed $H_2/H_{\infty}$ control designs.

조준경안정화시스템의 인식과 제어 (Identification and Control of Command Panoramic Sight System)

  • 김대운;전순용
    • 전자공학회논문지SC
    • /
    • 제44권3호
    • /
    • pp.14-21
    • /
    • 2007
  • 조준경이 장갑차 주행에 의한 진동 등을 포함한 온갖 비선형적인 외란이 가해지는 상황에서 표적에 대해 조준선을 유지하도록 제어하는 시스템이 조준경 안정화 시스템이다. 본 논문에서는 이 조준경 안정화 시스템에 대해 시스템 인식 알고리즘의 하나인 순환최소자승법을 이용하여 시스템 파라미터를 구하여 안정화 시스템을 인식하여 모델링하였으며 이렇게 구해진 모델을 제어하기 위해 지식기반제어기인 퍼지제어기 및 퍼지 PI이득조정 제어기를 설계하였다. 또한 비선형적인 잡음을 추가한 상황에서 현재 차기보병전투장갑차의 조준경 안정화 시스템의 제어기로 사용하고 있는 Lead PI제어기와 설계된 제어기의 성능을 비교하는 시뮬레이션을 수행하여 그 성능을 확인하였다.

Application of Fuzzy PI Control Algorithm as Stator Power Controller of a Double-Fed Induction Machine in Wind Power Generation Systems

  • Chung, Gyo-Bum;Choi, Jae-Ho
    • Journal of Power Electronics
    • /
    • 제9권1호
    • /
    • pp.109-116
    • /
    • 2009
  • This paper addresses the output control of a utility-connected double-fed induction machine (DFIM) for wind power generation systems (WPGS). DFIM has a back-to-back converter to control outputs of DFIM driven by the wind turbine for WPGS. To supply commercially the power of WPGS to the grid without any problems related to power quality, the real and reactive powers (PQ) at the stator side of DFIM are strictly controlled at the required level, which in this paper is realized with the Fuzzy PI controller based on the field orientation control. For the Sinusoidal Pulse Width Modulation (SPWM) converter connected to the rotor side of DFIG to maintain the controllability of PQ at the state side of DFIM, the DC voltage of the DC link capacitor is also controlled at a certain level with the conventional Proportion-Integral (PI) controller of the real power. In addition, the power quality at the grid connected to the rotor side of DFIM through the back-to-back converter is maintained in a certain level with a PI controller of the reactive power. The controllers for the PQ at the stator side of DFIM, the DC link voltage of the back-to-back inverter and the reactive power at the grid connected to the rotor side of DFIM are designed and simulated in the PSIM program, of which the result verifies the performance of the proposed controllers.

추정된 절삭력 신호를 이용한 선삭력 제어

  • 허건수;김재옥
    • 한국정밀공학회지
    • /
    • 제17권5호
    • /
    • pp.173-179
    • /
    • 2000
  • While a cutting tool is machining a workpiece at various cutting depth, the feedrate is usually selected based on the maximum depth of cut. Even if this selection can avoid power saturation or tool breakage, it is very conservative compared to the capacity of the machine tools and can reduce the productivity significantly. Many adaptive control techniques that can adjust the feedrate to maintain the constant cutting force have been reported. However, these controllers are not very widely used in manufacturing industry because of the limitations in measuring the cutting force signals. In this paper, turning force control systems based on the estimated cutting force signals are proposed. A synthesized cutting force monitor is introduced to estimate the cutting force as accurately as a dynamometer does. Three control strategies of PI, adaptive and fuzzy logic controllers are applied to investigate the feasibility of utilizing the estimated cutting force fur turning force control. The experimental results demonstrate that the proposed systems can be easily realized in CNC lathe with requiring little additional hardware.

  • PDF

지글러-니콜스 제어파라미터 조정법 (1), (2)의 연관성에 대한 해석적 연구 (An Analytic Study on the Relations between the Ziegler-Nichols Tuning Methods for Controllers)

  • 강인철;최순만;최재성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권2호
    • /
    • pp.219-225
    • /
    • 2002
  • Parameter tuning methods by Ziegler-Nichols for PID controllers are generally classified into Z-N(1) and Z-N(2). The purpose of this paper is to describe what relations exist between the methods of Z-N(1) and Z-N(2), or how Z-N(1) can be originated from Z-N(2) by analyzing one loop control system composing of P or PI controller and time delay process. In this paper, for the first step to seek mutual relations, the simple formulas of Z-N(2) are transformed into those composing of the same parameters as Z-N(1) which is derived from the analysis of frequency characteristics. Then, the approximation of the actual ultimate frequency is proposed as important premise in the translation between Z-N(1) and (2). Such equalization and approximation brings a simple approximated formula which can explain how Z-N(1) is originated from the Z-N(2) in the form of formula.

Closed-loop controller design, stability analysis and hardware implementation for fractional neutron point kinetics model

  • Vyawahare, Vishwesh A.;Datkhile, G.;Kadam, P.;Espinosa-Paredes, G.
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.688-694
    • /
    • 2021
  • The aim of this work is the analysis, design and hardware implementation of the fractional-order point kinetics (FNPK) model along with its closed-loop controller. The stability and closed-loop control of FNPK models are critical issues. The closed-loop stability of the controller-plant structure is established. Further, the designed PI/PD controllers are implemented in real-time on a DSP processor. The simulation and real-time hardware studies confirm that the designed PI/PD controllers result in a damped stable closed-loop response.

Application Study of Reinforcement Learning Control for Building HVAC System

  • Cho, Sung-Hwan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제14권4호
    • /
    • pp.138-146
    • /
    • 2006
  • Recently, a technology based on the proportional integral (PI) control have grown rapidly owing to the needs for the robust capacity of the controllers from industrial building sectors. However, PI controller generally requires tuning of gains for optimal control when the outside weather condition changes. The present study presents the possibility of reinforcement learning (RL) control algorithm with PI controller adapted in the HVAC system. The optimal design criteria of RL controller was proposed in the environment chamber experiment and a theoretical analysis was also conducted using TRNSYS program.

고장진단을 위한 PI제어기간 직결합 루프시스템의 응답특성에 대한 연구 (A Study on the Properties of Loop System Configured by Coupling 2 PI Controllers for Fault Diagnosis)

  • 최순만;두현욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.791-796
    • /
    • 2007
  • When 2 sets of PID controllers are coupled directly each other to configure a closed control loop on behalf of coupling a controller and a plant. the behaviors or this exclusive loop system are expected to be unique in inherent system responses. If its properties be disclosed and generalized well in advance, it is possible for us to use the results for the purpose of fault detection and performance monitoring between control stations from the stage of system design. particularly in such cases as cascade control systems. In this paper. general properties of the proposed system are analyzed firstly to check whether it is controllable and how its steady responses would be. To simplify calculation, the analysis has been performed based on the transfer equation derived from a modelled case which consists of 2 PI controllers and signal converters between them. including time delay element and first-lag element to consider the situation of signal transmission. The results acquired from simulation are suggested to show how it works actually.

Comparative Study of PI, Fuzzy and Fuzzy tuned PI Controllers for Single-Phase AC-DC Three-Level Converter

  • Gnanavadivel, J;Senthil Kumar, N;Yogalakshmi, P
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.78-90
    • /
    • 2017
  • This paper presents the design of closed loop controllers operating a single-phase AC-DC three-level converter for improving power quality at AC mains. Closed loop inhibits outer voltage controller and inner current controller. Simulations of three level converter with three different voltage and current controller combinations such as PI-Hysteresis, Fuzzy-Hysteresis and Fuzzy tuned PI-Hysteresis are carried out in MATLAB/Simulink. Performance parameters such as input power factor and source current total harmonic distortion (THD) are considered for comparison of the three controller combinations. The fuzzy-tuned PI voltage controller with hysteresis current controller combination provides a better result, with a source-current THD of 0.93% and unity power factor without any source side filter for the three level converter. For load variations of 25% to 100%, a THD of less than 5% is obtained with a maximum value of only 1.67%. Finally, the fuzzy-tuned PI voltage with hysteresis controller combination is implemented in a Xilinx Spartan-6 XC6SLX25 FPGA board for experimental validation of power quality enhancement. A prototype 100 W, 0-24-48 V as output converter is considered for the testing of controller performance. A source-current THD of 1.351% is obtained in the experimental study with a power factor near unity. For load variations of 25% to 100%, the THD is found to be less than 5%, with a maximum value of only 2.698% in the experimental setup which matches with the simulation results.

유도전동기 드라이브의 제어를 위한 자기동조 및 적응 퍼지제어기 개발 (Development of Self Tuning and Adaptive Fuzzy Controller to control of Induction Motor)

  • 고재섭;최정식;정동화
    • 조명전기설비학회논문지
    • /
    • 제24권4호
    • /
    • pp.33-42
    • /
    • 2010
  • 벡터제어를 적용한 유도전동기 드라이브는 고성능 제어를 위하여 산업 적용분야에 광범위하게 사용되고 있다. 그러나 유도전동기의 모델은 비선형이고 복잡하기 때문에 포화, 온도변화, 외란 및 파라미터 변동등에 의해 성능 및 신뢰성이 저하된다. 이러한 가변속 드라이브를 제어하기 위하여 종래의 PI와 같은 제어기들이 일반적으로 사용되어졌다. 이러한 제어기들은 이상적인 벡터제어 상태에서도 광범위한 동작영역에서 양호한 성능을 나타내는데 한계를 가지고 있다. 본 논문은 퍼지제어, 신경회로망, 적응 퍼지제어로 구성된 FNN(Fuzzy-Neural Network)-PI 제어기 기반 자기동조 PI 제어기와 ANN을 이용한 속도추정을 제시한다. FNN-PI, AFC, ANN 제어기를 이용한 제어 알고리즘은 유도전동기 드라이브 시스템에 적용하여 그 결과를 분석하고 제어기의 효용성을 입증한다.