• 제목/요약/키워드: PI control algorithm

검색결과 383건 처리시간 0.023초

콜러스터링 퍼지알고리즘을 이용한 영구자석 동기전동기 구동용 PI 제어기 설계 (PI Controller Design for Permanent Magnet Synchronous Motor Drives Using Clustering Fuzzy Algorithm)

  • 권정진;한우용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.182-184
    • /
    • 2004
  • This paper presents a PI controller tuning method for high performance permanent magnet synchronous motor (PMSM) drives under load variations using clustering fuzzy algorithm. In many speed tracking control systems PI controller has been used due to its simple structure and easy of design. PI controller, however, suffers from the electrical machine parameter variations and disturbances. In order to improve the tracking control performance under load variations, the PI controller parameters are modified during operation by clustering fuzzy method. This method based on optimal fuzzy logic system has simple structure and computational simplicity. It needs only sample data which is obtained by optimal controller off-line. As the sample data implemented in the adaptive fuzzy system can be modified or extended, a flexible control system can be obtained Simulation results show the usefulness of the proposed controller.

  • PDF

A Novel Control Algorithm of a Three-phase Four-wire PV Inverter with Imbalance Load Compensation Function

  • Le, Dinh-Vuong;Kim, Chang-Soon;Go, Byeong-Soo;Park, Minwon;Yu, In-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1131-1137
    • /
    • 2018
  • In this paper, the authors suggest a new control algorithm for a three-phase four-wire photovoltaic (PV) inverter with imbalance load compensation function using conventional proportional-integral (PI) controllers. The maximum power of PV panel is calculated by the MPPT control loop. The reference varying signals of current controllers are transformed to two different rotating frames where they become constant signals. Then simple PI controllers are applied to achieve zero steady-state error of the controllers. The proposed control algorithm are modeled and simulated with imbalance load configuration to verify its performance. The simulation results show that the maximum PV power is transferred to the grid and the imbalance power is compensated successfully by the proposed control algorithm. The inverter has a fast response (~4 cycles) during the transient period. The proposed control algorithm can be effectively utilized to the three-phase four-wire inverter with imbalance load compensation function.

Application Study of Reinforcement Learning Control for Building HVAC System

  • Cho, Sung-Hwan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제14권4호
    • /
    • pp.138-146
    • /
    • 2006
  • Recently, a technology based on the proportional integral (PI) control have grown rapidly owing to the needs for the robust capacity of the controllers from industrial building sectors. However, PI controller generally requires tuning of gains for optimal control when the outside weather condition changes. The present study presents the possibility of reinforcement learning (RL) control algorithm with PI controller adapted in the HVAC system. The optimal design criteria of RL controller was proposed in the environment chamber experiment and a theoretical analysis was also conducted using TRNSYS program.

PI-LEAD 알고리즘을 이용한 2축 안정화 짐벌 시스템 제어 (The Control for the 2-Axis Stabilized Gimbal using the PI-LEAD Algorithm)

  • 이진복;최한고
    • 융합신호처리학회논문지
    • /
    • 제14권2호
    • /
    • pp.117-123
    • /
    • 2013
  • 서보 시스템에서 마찰과 같은 비선형 요소는 측정이 어려우며, 또한 정확한 예측이 어려워 보상하기가 쉽지 않다. 특히, 2축 안정화 짐벌 시스템에서 마찰은 큰 오차를 발생시켜 최종적으로 제어 성능을 만족시키지 못한다. 이와 같은 문제점을 해결하기 위해 관측기 등을 적용한 마찰 보상 연구가 많이 진행되어 왔으나 특정 조건에서만 적용되어 군수 분야에서 정밀도를 요하는 2축 안정화 짐벌 시스템에 적용하는데 제한적이다. 본 논문에서는 가장 일반적이면서 강인성이 입증된 PID 알고리즘을 변형시킨 PI-LEAD 알고리즘을 사용하여 모델링 및 시뮬레이션을 통해 마찰 보상 효과를 입증하고, 실제 2축 안정화 짐벌 시스템에 적용하여 효과를 검증한다. 성능시험을 통해 PI-LEAD 알고리즘이 마찰에 의한 오차를 최소화하여 정밀 서보 시스템에서 요구하는 성능을 만족하는 것을 검증하였다.

SRM의 가변속 구동을 위한 퍼지 PI 제어기 설계 (Design of Fuzzy PI Controller for Variable Speed Drive of Switched Reluctance Motor)

  • 윤용호;박준석;송상훈;원충연;김재문
    • 전기학회논문지
    • /
    • 제61권10호
    • /
    • pp.1529-1535
    • /
    • 2012
  • This paper presents the application algorithm for speed control of Switched Reluctance Motor. The conventional PI controller has been widely used in industrial applications. But it is very difficult to find the optimal PI control gain. Fuzzy control does not need any model of plant. It is based on plant operator experience and heuristics. The proposed fuzzy logic modifier increases the control performance of conventional PI controller. Simulation and experimental results show that the proposed fuzzy control method was superior to the conventional PI controller in the respect of system performance. The experiments are performed to verify the capability of proposed control method on 6/4 salient type SRM.

퍼지 PI제어기를 이용한 유도전동기 속도 센서리스 벡터제어 (Sensorless Vector Control of Induction Motor Using Fuzzy PI Controller)

  • 남상현;이재환;김대균;김길동;이승환;한경희
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.390-393
    • /
    • 1999
  • For high performance ac drives, the speed sensorless vector control and a speed control algorithm base on the Fuzzy PI controller have received increasing attention. A Fuzzy PI controller is used for robust and fast speed control and space vector modulation method is used for PWM wave generation in this proposed system. The computer simulation results show that the proposed controller are more excellent control characteristics than conventional PI controller in transient-state response.

  • PDF

Design of Optimal Fuzzy Logic based PI Controller using Multiple Tabu Search Algorithm for Load Frequency Control

  • Pothiya Saravuth;Ngamroo Issarachai;Runggeratigul Suwan;Tantaswadi Prinya
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권2호
    • /
    • pp.155-164
    • /
    • 2006
  • This paper focuses on a new optimization technique of a fuzzy logic based proportional integral (FLPI) load frequency controller by the multiple tabu search (MTS) algorithm. Conventionally, the membership functions and control rules of fuzzy logic control are obtained by trial and error method or experiences of designers. To overcome this problem, the MTS algorithm is proposed to simultaneously tune proportional integral gains, the membership functions and control rules of a FLPI load frequency controller in order to minimize the frequency deviations of the interconnected power system against load disturbances. The MTS algorithm introduces additional techniques for improvement of the search process such as initialization, adaptive search, multiple searches, crossover and restart process. Simulation results explicitly show that the performance of the proposed FLPI controller is superior to conventional PI and FLPI controllers in terms of overshoot and settling time. Furthermore, the robustness of the proposed FLPI controller under variation of system parameters and load change are higher than that of conventional PI and FLPI controllers.

유전알고리즘을 이용한 직류 서보 모터 속도제어용 PI제어기의 설계 (Design of PI Controller for DC ServoMotor Speed Control Using Genetic Algorithm)

  • 박한석;박현주;김동완;황기현;우정인
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2111-2113
    • /
    • 2002
  • This paper proposes the design of PI controller using real-coding genetic algorithm showing a good performance on convergence velocity and diversity of population among evolutionary computations. To evaluate the proposed method's effectiveness, we apply the proposed GA-PI controller to the speed control of an actual DC servomotor system. The experimental results show that GA-PI controller has the better control performance than PI controller in terms of settling time rising time and overshoot.

  • PDF

PSO-Based Nonlinear PI-type Controller Design for Boost Converter

  • Seo, Sang-Wha;Kim, Yong;Choi, Han Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.211-219
    • /
    • 2018
  • This paper designs a nonlinear PI-type controller for the robust control of a boost DC-DC converter using a particle swarm optimization (PSO) algorithm. Based on the common knowledge that the transient responses can be improved if the P and I gains increase when the transient error is big, a nonlinear PI-type control design method is developed. A design procedure to autotune the nonlinear P and I gains is given based on a PSO algorithm. The proposed nonlinear PI-type controller is implemented in real time on a Texas Instruments TMS320F28335 floating-point DSP. Simulation and experimental results are given to demonstrate the effectiveness and practicality of the proposed method.

유전알고리즘을 이용한 Optical Disk Drive의 퍼지 PI 제어기 설계 (Design of a GA-Based Fuzzy PI Controller for Optical Disk Drive)

  • 유종화;주영훈;박진배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.413-417
    • /
    • 2004
  • This paper proposes a fuzzy proportional-Integral (PI) controller for the precise tracking control of optical disk systems based on the genetic algorithm (GA). The fuzzy PI control rules are optimized by the GA to yield an optimal fuzzy PI controller. We validate the feasibility of the proposed method through a numerical simulation.

  • PDF