• Title/Summary/Keyword: PHY

Search Result 291, Processing Time 0.03 seconds

Phytochromes A and B: Specificity of photoperception and structure/function analysis of bilin chromophores

  • Shinomura, Tomoko;Hanzawa, Hiroko;Furuya, Masaki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.90-93
    • /
    • 2002
  • Phytochrome A (phyA) and phytochrome B (phyB) perceive light and adapt to fluctuating circumstances by different manners in terms of effective wavelengths, required fluence and photoreversibility. Action spectra for induction of seed germination and inhibition of hypocotyl elongation using phytochrome mutants of Arabidopsis showed major difference. PhyA is the principal photoreceptor for the very low fluence responses and the far-red light-induced high irradiance responses, while phyB controls low fluence response in a red/far-red reversible mode. The structural requirement of their bilin chromophores for photosensory specificity of phyA and phyB was investigated by reconstituting holophytochromes through feeding various synthetic bilins to the following chromophore-deficient mutants: hy1, hyl/phyA and hyl/phyB mutants of Arabidopsis. We found that the vinyl side-chain of the D-ring in phytochromobilin interacts with phyA apoprotein. This interaction plays a direct role in mediating the specific photosensory function of phyA. The ethyl side-chain of the D-ring in phycocyanobilin fails to interact with phyA apoprotein, therefore, phyA specific photosensory function is not observed. In contrast, both phytochromobilin and phycocyanobilin interact with phyB apoprotein and induce phyB specific photosensory functions. Structural requirements of the apoproteins and the chromophores for the specific photoperception of phyA and phyB are discussed.

  • PDF

Individual or combinational use of phytase, protease, and xylanase for the impacts on total tract digestibility of corn, soybean meal, and distillers dried grains with soluble fed to pigs

  • Adsos Adami Passos;Vitor Hugo Cardoso Moita;Sung Woo Kim
    • Animal Bioscience
    • /
    • v.36 no.12
    • /
    • pp.1869-1879
    • /
    • 2023
  • Objective: This study was to evaluate the effects of individual or combinational use of phytase, protease, and xylanase on total tract digestibility of corn, soybean meal, and distillers dried grains with soluble (DDGS) fed to pigs. Methods: Each experiment had four 4×4 Latin squares using 16 barrows. Each period had 5-d adaptation and 3-d collection. All experiments had: CON (no enzyme); Phy (CON+phytase); Xyl (CON+xylanase); Pro (CON+protease); Phy+Xyl; Phy+Pro, Xyl+Pro, Phy+Xyl+Pro. Each Latin square had 'CON, Phy, Xyl, and Phy+Xyl'; 'CON, Phy, Pro, and Phy+Pro'; 'CON, Pro, Xyl, and Xyl+Pro'; and 'Phy+Xyl, Phy+Pro, Xyl+Pro, Phy+Xyl+Pro'. Results: The digestible energy (DE), metabolizable energy (ME), and nitrogen retention (NR) of corn were not affected by enzymes but the apparent total tract digestibility (ATTD) of phosphorus (P) was improved (p<0.01) by Phy. The DE and ATTD dry matter (DM) in soybean meal were increased (p<0.05) by Phy+Pro and the ATTD P was improved (p<0.01) by Phy, Phy+Pro, and Phy+Xyl. The DE, ME, and ATTD DM in DDGS were improved (p<0.05) by Phy+Xyl and the ATTD P was improved (p<0.01) by Phy, Phy+Pro, and Phy+Xyl. Conclusion: Phytase individually or in combination with xylanase and protease improved the Ca and P digestibility of corn, soybean meal, and DDGS, from the hydrolysis of phytic acid. The supplementation of protease was more effective when combined with phytase and xylanase in the soybean meal and DDGS possibly due to a higher protein content in these feedstuffs. Xylanase was more effective in DDGS diets due to the elevated levels of non-starch polysaccharides in these feedstuffs. However, when xylanase was combined with phytase, it demonstrated a higher efficacy improving the nutrient digestibility of pigs. Overall, combinational uses of feed enzymes can be more efficient for nutrient utilization in soybean meal and DDGS than single enzymes.

Phytochromes are Involved in the Regulation of Growth and the Gravitropic Response via Ethylene Production in Hypocotyl of Arabidopsis (애기장대의 하배축에서 피토크롬이 생장과 굴중성 반응에 미치는 영향)

  • Lee, Sang Seung;Kim, Soon Young
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.9-16
    • /
    • 2018
  • Light is essential to the growth and development of plants, and it is perceived by phytochromes, which are one of the photoreceptors that regulate physiological responses in plants. Ethylene regulates the dormancy, senescence, growth, and development of organs in plants. This research focused on the interaction of phytochromes and ethylene to control hypocotyl growth and gravitropism using phytochrome mutants of Arabidopsis, phyA, phyB, and phyAB, under three light conditions: red (R) light, farred (FR) light, and white light. The mutant phyAB exhibited the most stimulation of gravitropic response of all three phytochrome mutants and wild type (WT) in all three light conditions. Moreover, phyB in the R light condition showed more negative gravitropism than phyA. However, phyB in the FR light condition showed less curvature than phyA. The hypocotyl growth pattern was similar to the gravitropic response in several light conditions. To explain the mechanism of the regulation of gravitropic response and growth, we measured the ethylene production and activities of in vitro ACS and ACO. Ethylene production was reduced in all the mutants grown in white light in comparison to the WT. Ethylene production increased in the phyA grown in R light and phyB grown in FR light in comparison to the other mutants. The ACS activity coincided with the ethylene production in the phyA and the phyB grown in R light and FR light, respectively. These results suggest that the Pfr form of phyB in R light and the Pr form of phyA in FR light increased ethylene production via increasing ACS activity.

Isolation and characterization of Phytochrome B gene in Poplar (포플러의 Phytochrome B 유전자 분리 및 특성구명)

  • Kang, Hoduck;Lee, Keum-Young;Kang, Sang-Gu;Bae, Han-hong
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.4 s.161
    • /
    • pp.236-242
    • /
    • 2005
  • Phytochrome B (PhyB) gene, which is a photoreceptor that controls plant growth under various light conditions, was cloned from Chinese hybrid poplar 'Soohang 1'. Nucleotide sequence and deduced amino acid sequences PhyB cDNA of 'Soohang' is consisted with 3,456 nucleotides and 1,156 amino acids. The cloned PhyB fragment showed 98% homology of amino acid sequences with Populus balsamifera PhyB1. According to Northern blot analysis. PhyB was up-regulated by light, while PhyB transcript was not detected under dark condition. According to this study, the cloned PhyB is induced by light and functions as photoreceptor.

Development of replacement diets for improved growth and survival rate of scallop juvenile Patinopecten yessoensis (큰가리비 Patinopecten yessoensis 치패의 성장 및 생존율 향상을 위한 대체 먹이원 개발)

  • Nam, Myung-Mo;Park, Jin-Chul;Park, Mi Seon;Lee, Chu
    • The Korean Journal of Malacology
    • /
    • v.28 no.2
    • /
    • pp.137-143
    • /
    • 2012
  • This study was done to examine the effect of several diets (Phytoplankton = PHY, Shellfish Diet 1800 = INS, Oil type = OTE, Powder type = PTE) on growth, survival rate and biochemical composition of scallop juvenile Patinopecten yessoensis. The highest survival rate were observed in PTE + PHY (90%). The highest shell length and shell height was observed in PHY and PTE + PHY diet (P > 0.05). The growth with PTE and OTE diet was the lowest in shell length and shell height (P < 0.05). On the other hand, the shell width and meat weight were highest in PHY and PTE + PHY, while the lowest in PTE and OTE (P < 0.05). The content of fatty acids such as DHA and n-3 PUFA levels was significantly higher in the juvenile fed on PTE + PHY than in those fed on PHY and INS alone. Also, the total protein ranged 55.5 to 65.2% in PHY + INS, while 44.8%, 47.9% in PTE and OTE respectively. The RNA and DNA contents were the highest in PHY and PTE + PHY, while the lowest in PTE and OTE (P < 0.05). RNA/DNA ratio significantly higher in juvenile with PHY + INS than those with PTE and OTE alone (P < 0.05). The combination of PTE + PHY could improve the growth and survival of scallop juvenile. Our results suggested that PTE could partially replace live algae in bivalve laval rearing.

MIPI CSI-2 & D-PHY Camera Controller Design for Future Mobile Platform (차세대 모바일 단말 플랫폼을 위한 MIPI CSI-2 & D-PHY 카메라 컨트롤러 구현)

  • Hyun, Eu-Gin;Kwon, Soon;Jung, Woo-Young
    • The KIPS Transactions:PartA
    • /
    • v.14A no.7
    • /
    • pp.391-398
    • /
    • 2007
  • In this paper, we design a future mobile camera standard interface based on the MIPI CSI-2 and D-PHY specification. The proposed CSI-2 have the efficient multi-lane management layer, which the independent buffer on the each lane are merged into single buffer. This scheme can flexibly manage data on multi lanes though the number of supported lanes are mismatched in a camera processor transmitter and a host processor. The proposed CSI-2 & D-PHY are verified under test bench. We make an experiment on CSI-2 & D-PHY with FPGA type test-bed and implement them onto a mobile handset. The proposed CSI-2 & D-PHY module are used as both the bridge type and the future camera processor IP for SoC.

Effect of Light on Root Growth and Gravitropic Response of Phytochrome Mutants of Arabidopsis (Arabidopsis phytochrome mutant에서 빛이 뿌리 생장과 굴중성 반응에 미치는 영향)

  • Park, Ji-Hye;Lee, Sang-Seoung;Woo, Soon-Hwa;Kim, Soon-Young
    • Journal of Life Science
    • /
    • v.22 no.5
    • /
    • pp.681-686
    • /
    • 2012
  • Light, one of the environmental stimuli, is fundamental to the growth and development of plants. Red and far-red light are sensed using the phytochrome family of plant photoreceptors. To investigate the effect of light on root growth and gravitropism, we used the Arabidopsis phytochrome mutants grown in several light conditions. The root growth of $phyA$ reared in all light conditions except white light and was stimulated compared to the WT. The stimulation of root growth was obvious in $phyA$ grown in red light. On the other hand, the root growth of $phyB$ grown in all light conditions decreased, and the lowest rate of decrease was observed in $phyAB$ grown in white and red light. The gravitropic response of $phyA$ was stimulated compared to the WT when it was grown in all light conditions except far-red light. $PhyAB$ grown in all light conditions showed the inhibition of gravitropic response. The transcript level of ACS, one of the enzymes regulating ethylene biosynthesis, increased in $phyA$ grown in white and red light, but not in $phyA$ grown in far-red light. In conclusion, these results suggested that the $P_{fr}$ form of $phyB$ regulates the root growth and gravitropism.

Low Power Design of a MIPI Digital D-PHY for the Mobile Signal Interface (모바일 기기 신호 인터페이스용 MIPI 디지털 D-PHY의 저전력 설계)

  • Kim, Yoo-Jin;Kim, Doo-Hwan;Kim, Seok-Man;Cho, Kyoung-Rok
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.12
    • /
    • pp.10-17
    • /
    • 2010
  • In this paper, we design digital D-PHY link chip controling DSI (Display Serial Interface) that meets MIPI (Mobile Industry Processor Interface) standard. The D-PHY supports a high-speed (HS) mode for fast data traffic and a low-power (LP) mode for control transactions. For low power consumption, the unit blocks in digital D-PHY are optionally switched using the clock gating technique. The proposed low power digital D-PHY is simulated and compared with conven tional one about power consumption on each transaction mode. As a result, power consumptions of TX, RX, and total in HS mode decrease 74%, 31%, and 50%, respectively. In LP mode, power reduction rates of TX, RX, and total are 79%, 40%, and 51.5%, separately. We implemented the low power MIPI D-PHY digital chip using $0.13-{\mu}m$ CMOS process under 1.2V supply.

Production performances and antioxidant activities of laying hens fed Aspergillus oryzae and phytase co-fermented wheat bran

  • Huang, Chung Ming;Chuang, Wen Yang;Lin, Wei Chih;Lin, Li Jen;Chang, Sheng Chang;Lee, Tzu Tai
    • Animal Bioscience
    • /
    • v.34 no.3_spc
    • /
    • pp.371-384
    • /
    • 2021
  • Objective: Wheat bran (WB) was co-fermented with Aspergillus oryzae and phytase (Phy) to determine whether co-fermentation improve WB phosphorus and fiber utilization in Isa-brown layers. Methods: A total of 112 Isa brown layer were randomly divided into 7 treatments with 8 replicates per a treatment and 2 hens per a replicate. The treatments included basal diet (control), basal diet supplemented with 250 unit/kg Phy (control+Phy), diet with 10% WB (10% WB), diet with 5% WB and 250 unit/kg Phy (5% WB+Phy) diet with 10% WB and 250 unit/kg Phy (10% WB+Phy), diet with 5% fermented WB supplemented with molasses and phy (PCFWH) and 125 unit/kg Phy (5% PCFWH), and diet with 10% PCFWH (10% PCFWH). The intestinal microbial population, intestinal morphology, serum antioxidant enzyme activities, and excreta phosphorus content were assessed. Results: In PCFWH, spore counts, protease activity, xylanase activity, and ferulic acid were 8.50 log/g dry matter (DM), 190 unit/g DM, 120 unit/g DM, and 127 ㎍/g, respectively. Xylobiose and xylotriose were released in PCFWH, while they were not detectable in WB. Antioxidant capacity was also enhanced in PCFWH compared to WB. The 10% WB+Phy and 10% PCFWH groups produced higher egg mass, but hens fed 5% WB+Phy had the lowest amount of feed intake. Eggs from 10% PCFWH had better eggshell weight, eggshell strength, and eggshell thickness. Birds fed with 10% PCFWH also had higher serum superoxide dismutase and catalase activities. Compare to control, 10% PCFWH significantly reduced excreta phosphorus content. Conclusion: Diet inclusion of 10% PCFWH improved egg quality, antioxidant status, and excreta phosphorus content of laying hens.

Improved Thermal Stability of a Novel Acidophilic Phytase

  • Byung Sam Son;So Hyeong Kim;Hye-Young Sagong;Su Rin Lee;Eun Jung Choi
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.5
    • /
    • pp.1119-1125
    • /
    • 2024
  • Phytase increases the availability of phosphate and trace elements by hydrolyzing the phosphomonoester bond in phytate present in animal feed. It is also an important enzyme from an environmental perspective because it not only promotes the growth of livestocks but also prevents phosphorus contamination released into the environment. Here we present a novel phytase derived from Turicimonas muris, TmPhy, which has distinctive structure and properties compared to other previously known phytases. TmPhy gene expressed in the Pichia system was confirmed to be 41 kDa in size and was used in purified form to evaluate optimal conditions for maximum activity. TmPhy has a dual optimum pH at pH3 and pH6.8 and exhibited the highest activity at 70℃. However, the heat tolerance of the wildtype was not satisfactory for feed application. Therefore, random mutation, disulfide bond introduction, and N-terminal mutation were performed to improve the thermostability of the TmPhy. Random mutation resulted in TmPhyM with about 45% improvement in stability at 60℃. Through further improvements, a total of three mutants were screened and their heat tolerance was evaluated. As a result, we obtained TmPhyMD1 with 46.5% residual activity, TmPhyMD2 with 74.1%, and TmPhyMD3 with 66.8% at 80℃ heat treatment without significant loss of or with increased activity.