• 제목/요약/키워드: PHD

검색결과 166건 처리시간 0.028초

Morphological and molecular characteristics of Paralecithodendrium longiforme (Digenea: Lecithodendriidae) adults and cercariae from Chinese pipistrelle bats and viviparid snails in Thailand

  • Thitichai Arttra;Pheravut Wongsawad;Chalobol Wongsawad;Nattawadee Nantarat;Preeyaporn Butboonchoo;Jong-Yil Chai
    • Parasites, Hosts and Diseases
    • /
    • 제62권1호
    • /
    • pp.85-97
    • /
    • 2024
  • This study aimed to describe the morphological and molecular characteristics of Paralecithodendrium longiforme (Digenea: Lecithodendriidae) adults and cercariae isolated in Thailand. Adult flukes were isolated from the Chinese pipistrelle bat (Hypsugo sp.), and cercariae were detected in the viviparid snail (Filopaludina martensi martensi) from Chiang Mai province. The morphological characteristics were observed and described using conventional methods, and the molecular characteristics with internal transcribed spacer 2 (ITS2) and 28S rDNA gene sequences. The adult flukes were fusiform, 0.84-0.98 mm in length, and 0.37-0.49 mm in width, and were distinguishable from other species by the presence of longitudinal uterine coils. The cercariae were nonvirgulate xiphidiocercariae, with the oral sucker bigger than the acetabulum, the tail without fin fold, a body size of 117.5-138.3×48.3-52.2 ㎛, and a tail size of 100.7-103.7×15.0-18.9 ㎛. Molecular studies revealed that the adults and cercariae shared 99.3% (ITS2) and 99.6% (28S rDNA) homology with each other. They were phylogenetically close to P. longiforme with an identity of 94.5% for ITS2 and 98.7% for 28S rDNA. This study provides new information on the natural definitive host and first intermediate host of P. longiforme in Thailand. The discovery of its cercarial stage in Filopaludina snails highlights the importance of monitoring the associated second intermediate host and prevention and control of this potentially zoonotic trematode.

Genome-wide identification of histone lysine methyltransferases and their implications in the epigenetic regulation of eggshell formation-related genes in a trematode parasite Clonorchis sinensis

  • Min-Ji Park;Woon-Mok Sohn;Young-An Bae
    • Parasites, Hosts and Diseases
    • /
    • 제62권1호
    • /
    • pp.98-116
    • /
    • 2024
  • Epigenetic writers including DNA and histone lysine methyltransferases (DNMT and HKMT, respectively) play an initiative role in the differentiation and development of eukaryotic organisms through the spatiotemporal regulation of functional gene expressions. However, the epigenetic mechanisms have long been suspected in helminth parasites lacking the major DNA methyltransferases DNMT1 and DNMT3a/3b. Very little information on the evolutionary status of the epigenetic tools and their role in regulating chromosomal genes is currently available in the parasitic trematodes. We previously suggested the probable role of a DNMT2-like protein (CsDNMT2) as a genuine epigenetic writer in a trematode parasite Clonorchis sinensis. Here, we analyzed the phylogeny of HKMT subfamily members in the liver fluke and other platyhelminth species. The platyhelminth genomes examined conserved genes for the most of SET domain-containing HKMT and Disruptor of Telomeric Silencing 1 subfamilies, while some genes were expanded specifically in certain platyhelminth genomes. Related to the high gene dosages for HKMT activities covering differential but somewhat overlapping substrate specificities, variously methylated histones were recognized throughout the tissues/organs of C. sinensis adults. The temporal expressions of genes involved in eggshell formation were gradually decreased to their lowest levels proportionally to aging, whereas those of some epigenetic tool genes were re-boosted in the later adult stages of the parasite. Furthermore, these expression levels were significantly affected by treatment with DNMT and HKMT inhibitors. Our data strongly suggest that methylated histones are potent epigenetic markers that modulate the spatiotemporal expressions of C. sinensis genes, especially those involved in sexual reproduction.

Effect of Antioxidant Enzymes on Hypoxia-Induced HIF-$1{\alpha}$ Accumulation and Erythropoietin Activity

  • Cho, Eun-Jin;Cho, Ki-Woon;Chung, Kyoung-Jin;Yang, Hee-Young;Park, Hyang-Rim;Park, Byung-Ju;Lee, Tae-Hoon
    • International Journal of Oral Biology
    • /
    • 제34권4호
    • /
    • pp.205-213
    • /
    • 2009
  • The mechanisms underlying the actions of the antioxidants upon reactive oxygen species (ROS) generation by NADPH oxidase complex have remained uncertain. In this study, we investigated NADPH oxidase activity and the role of antioxidant enzymes upon the generation of ROS during hypoxic stress. ROS generation was found to increase in the mouse kidney under hypoxic stress in a time-dependent manner. Moreover, we found in MCT cells that hypoxia-induced hydrogen peroxide production was decreased by NAC pretreatment. We further analyzed HIF-$1{\alpha}$, PHD2 and VHL expression in the NAC-pretreated MCT cells and assessed the response of antioxidant enzymes at the transcriptional and translational levels. SOD3 and Prdx2 were significantly increased during hypoxia in the mouse kidney. We also confirmed in hypoxic $Prdx2^{-/-}$ and SOD3 transgenic mice that erythropoietin (EPO) is transcriptionally regulated by HIF-$1{\alpha}$. In addition, although EPO protein was found to be expressed in a HIF-$1{\alpha}$ independent manner in three mouse lines, its activity differed markedly between normal and $Prdx2^{-/-}$/SOD3 transgenic mice during hypoxic stress. In conclusion, our current results indicate that NADPH oxidase-mediated ROS generation is associated with hypoxic stress in the mouse kidney and that SOD3 and Prdx2 cooperate to regulate cellular redox reactions during hypoxia.

The Histone Methyltransferase Inhibitor BIX01294 Inhibits HIF-1α Stability and Angiogenesis

  • Oh, Su Young;Seok, Ji Yoon;Choi, Young Sun;Lee, Sung Hee;Bae, Jong-Sup;Lee, You Mie
    • Molecules and Cells
    • /
    • 제38권6호
    • /
    • pp.528-534
    • /
    • 2015
  • Hypoxia-inducible factor (HIF) is a key regulator of tumor growth and angiogenesis. Recent studies have shown that, BIX01294, a G9a histone methyltransferase (HMT)-specific inhibitor, induces apoptosis and inhibits the proliferation, migration, and invasion of cancer cells. However, not many studies have investigated whether inhibition of G9a HMT can modulate HIF-$1{\alpha}$ stability and angiogenesis. Here, we show that BIX01294 dose-dependently decreases levels of HIF-$1{\alpha}$ in HepG2 human hepatocellular carcinoma cells. The half-life of HIF-$1{\alpha}$, expression of proline hydroxylase 2 (PHD2), hydroxylated HIF-$1{\alpha}$ and von Hippel-Lindau protein (pVHL) under hypoxic conditions were decreased by BIX01294. The mRNA expression and secretion of vascular endothelial growth factor (VEGF) were also significantly reduced by BIX01294 under hypoxic conditions in HepG2 cells. BIX01294 remarkably decreased angiogenic activity induced by VEGF in vitro, ex vivo, and in vivo, as demonstrated by assays using human umbilical vein endothelial cells (HUVECs), mouse aortic rings, and chick chorioallantoic membranes (CAMs), respectively. Furthermore, BIX01294 suppressed VEGF-induced matrix metalloproteinase 2 (MMP2) activity and inhibited VEGF-induced phosphorylation of VEGF receptor 2 (VEGFR-2), focal adhesion kinase (FAK), and paxillin in HUVECs. In addition, BIX01294 inhibited VEGF-induced formation of actin cytoskeletal stress fibers. In conclusion, we demonstrated that BIX01294 inhibits HIF-$1{\alpha}$ stability and VEGF-induced angiogenesis through the VEGFR-2 signaling pathway and actin cytoskeletal remodeling, indicating a promising approach for developing novel therapeutics to stop tumor progression.

세미 오픈컷 역타공법의 현장적용에 관한 연구 (Study on the Application of Semi-open cut Top-Down Construction for Framework)

  • 소광호
    • 한국공간구조학회논문집
    • /
    • 제11권2호
    • /
    • pp.129-138
    • /
    • 2011
  • 지하공사는 상부층의 구조물과 연계된 시공순서에 따라 Bottom-Up공법, Up-Up공법 그리고 Top-Down 공법으로 대별할 수 있다. 탑다운 공법을 사용하면 건물의 본구조를 흙막이지보공으로 이용하면서 상층에서 하층으로 굴착과 구체구축을 반복하여 시공함으로써 인접구조물이나 주변 지반의 변위를 극소화 시킬 수 있다. 이는 토류벽의 안정성이 높으며, 각층의 바닥슬래브를 작업공간으로 사용하여 도심지 공사에서 작업장 확보가 용이하다. 그러나 굴토작업이 슬래브 하부에서 진행되므로 작업 능률 및 작업환경이 저하되고, 어스앵커 공법보다 경제성이 없다는 이유로 다소 회피하는 경우가 종종있다. 따라서 본 논문에서는 터파기 공사는 세미오픈컷 공법을 적용하고 흙막이 공법에는 지하연속벽(슬러리월)을 그리고 지보공으로는 C.W.S공법을 적용한 역타공법으로 대상현장을 중심으로 기존 역타공법과 경제성, 공사기간 및 작업성 등을 분석 제시하였다. 토사운반 및 철골설치공사 작업의 용이성과 PRD 공사의 정밀도 향상 등의 품질관리가 우수하며, 공기단축이 가능하였다.

UHRF2 mRNA Expression is Low in Malignant Glioma but Silencing Inhibits the Growth of U251 Glioma Cells in vitro

  • Wu, Ting-Feng;Zhang, Wei;Su, Zuo-Peng;Chen, San-Song;Chen, Gui-Lin;Wei, Yong-Xin;Sun, Ting;Xie, Xue-Shun;Li, Bin;Zhou, You-Xin;Du, Zi-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권10호
    • /
    • pp.5137-5142
    • /
    • 2012
  • UHRF2 is a member of the ubiquitin plant homeo domain RING finger family, which has been proven to be frequently up-regulated in colorectal cancer cells and play a role as an oncogene in breast cancer cells. However, the role of UHRF2 in glioma cells remains unclear. In this study, we performed real-time quantitative PCR on 32 pathologically confirmed glioma samples (grade I, 4 cases; grade II, 11 cases; grade III, 10 cases; and grade IV, 7 cases; according to the 2007 WHO classification system) and four glioma cell lines (A172, U251, U373, and U87). The expression of UHRF2 mRNA was significantly lower in the grade III and grade IV groups compared with the noncancerous brain tissue group, whereas its expression was high in A172, U251, and U373 glioma cell lines. An in vitro assay was performed to investigate the functions of UHRF2. Using a lentivirus-based RNA interference (RNAi) approach, we down-regulated UHRF2 expression in the U251 glioma cell line. This down-regulation led to the inhibition of cell proliferation, an increase in cell apoptosis, and a change of cell cycle distribution, in which S stage cells decreased and G2/M stage cells increased. Our results suggest that UHRF2 may be closely related to tumorigenesis and the development of gliomas.

컴퓨터 모의층돌시험을 통한 콘크리트 중앙분리대 방호울타리 형식별 성능비교 연구 (A Comparison of Concrete Median Barriers in terms of Safety Performance using Computer Simulation)

  • 정봉조;장명순
    • 대한교통학회지
    • /
    • 제21권1호
    • /
    • pp.115-125
    • /
    • 2003
  • 콘크리트 중앙분리대 방호울타리(이하 중분대 시설)는 대표적인 강성 방호울타리로 사고차량의 중앙선 침범으로 인한 대형차량과의 충돌사고 방지를 위해 설치된다. 중앙분리대 폭을 충분히 할 수 없는 우리나라의 도로여건상 콘크리트 중앙분리대 방호울타리의 설치는 불가피하게 받아드려 지고 있으며 특히 유지관리 비용 측면에서 현실적인 대안으로 받아들여지고 있어 널리 사용되고 있다. 기존의 중분대 시설은 일반적으로 810mm 높이의 콘크리트 구조 위에 596mm 높이의 방현망을 추가하는 구조를 가지고 있으나 차량의 대형화 추세로 인해 현재 중분대 시설을 승월하는 교통사고가 빈번히 일어나고 중분대 상단의 방현망이 파괴되면서 2차 사고를 유발하는 경우가 발생하여 최근 들어 중분대 시설의 형식 개선이 요구되었다. 이러한 요구에 의해 가장 일반적이고 널리 사용되고 있는 F형과 NJ형, 약 80도의 단일경사면을 사용한 단일 경사형, 방현망을 없애고 순수한 콘크리트 방호울타리의 높이를 1,270mm로 높인 개선형 중분대 시설 형식에 대해 적정 대안을 찾아내고자 컴퓨터를 이용하여 모의 차량충돌시험을 수행하였다. 모의충돌시험에서는 구조적 안전성을 측정을 위해 대형차량의 롤(Roll)각을 측정하였고 소형차량의 경우 탑승자보호성능평가를 위해 차량이 받는 종, 횡방향 가속도 및 탑승자의 충돌속도(THIV), 탑승자의 가속도(PHD)를 측정하고 이들을 비교 검토하였다. 각 형식에 대한 컴퓨터 모의충돌시험 결과들을 종합적으로 비교 분석한 결과 차량의 안정성과 탑승자보호 성능에서 개선형 중분대 시설이 가장 안전한 것으로 나타났다.

한국 노인 여성의 치태에서 분리된 Actinomyces georgiae KHUD_A1의 유전체 염기서열 해독 (Genome sequence of Actinomyces georgiae KHUD_A1 isolated from dental plaque of Korean elderly woman)

  • 문지회;신승윤;홍원영;장은영;양석빈;류재인;이진용;이재형
    • 미생물학회지
    • /
    • 제55권1호
    • /
    • pp.74-76
    • /
    • 2019
  • 그람 양성 혐기성 간균 Actinomyces는 구강 인두, 위장관 및 비뇨 생식 기관의 점막 표면에서 흔히 서식한다. 본 논문에서는 한국 노인 여성의 치태에서 분리된 Actinomyces georgiae KHUD_A1의 유전체 염기서열을 분석하여 보고한다. 이 균주의 유전체는 2,652,059 bp의 크기로 GC 함량은 68.06%이며, CPBP family intramembrane metalloprotease 유전자와 bile acid: sodium symporter family protein 유전자 등 157개의 KHUD_A1 균주 특이적인 유전자들을 포함한다. 이 유전체의 서열 정보는 A. georgiae종의 일반적인 특성과 Actinomyces속의 유전체 다양성을 이해하는데 유용한 정보를 제공할 것이다.

UHRF1 Induces Methylation of the TXNIP Promoter and Down-Regulates Gene Expression in Cervical Cancer

  • Kim, Min Jun;Lee, Han Ju;Choi, Mee Young;Kang, Sang Soo;Kim, Yoon Sook;Shin, Jeong Kyu;Choi, Wan Sung
    • Molecules and Cells
    • /
    • 제44권3호
    • /
    • pp.146-159
    • /
    • 2021
  • DNA methylation, and consequent down-regulation, of tumour suppressor genes occurs in response to epigenetic stimuli during cancer development. Similarly, human oncoviruses, including human papillomavirus (HPV), up-regulate and augment DNA methyltransferase (DNMT) and histone deacetylase (HDAC) activities, thereby decreasing tumour suppressor genes (TSGs) expression. Ubiquitin-like containing PHD and RING finger domain 1 (UHRF1), an epigenetic regulator of DNA methylation, is overexpressed in HPV-induced cervical cancers. Here, we investigated the role of UHRF1 in cervical cancer by knocking down its expression in HeLa cells using lentiviral-encoded short hairpin (sh)RNA and performing cDNA microarrays. We detected significantly elevated expression of thioredoxin-interacting protein (TXNIP), a known TSG, in UHRF1-knockdown cells, and this gene is hypermethylated in cervical cancer tissue and cell lines, as indicated by whole-genome methylation analysis. Up-regulation of UHRF1 and decreased TXNIP were further detected in cervical cancer by western blot and immunohistochemistry and confirmed by Oncomine database analysis. Using chromatin immunoprecipitation, we identified the inverted CCAAT domain-containing UHRF1-binding site in the TXNIP promoter and demonstrated UHRF1 knockdown decreases UHRF1 promoter binding and enhances TXNIP expression through demethylation of this region. TXNIP promoter CpG methylation was further confirmed in cervical cancer tissue by pyrosequencing and methylation-specific polymerase chain reaction. Critically, down-regulation of UHRF1 by siRNA or UHRF1 antagonist (thymoquinone) induces cell cycle arrest and apoptosis, and ubiquitin-specific protease 7 (USP7), which stabilises and promotes UHRF1 function, is increased by HPV viral protein E6/E7 overexpression. These results indicate HPV might induce carcinogenesis through UHRF1-mediated TXNIP promoter methylation, thus suggesting a possible link between CpG methylation and cervical cancer.

Evaluating the activity of N-89 as an oral antimalarial drug

  • Nagwa S. M. Aly;Hiroaki Matsumori;Thi Quyen Dinh;Akira Sato;Shin-ichi Miyoshi;Kyung-Soo Chang;Hak Sun Yu;Takaaki Kubota;Yuji Kurosaki;Duc Tuan Cao;Gehan A. Rashed;Hye-Sook Kim
    • Parasites, Hosts and Diseases
    • /
    • 제61권3호
    • /
    • pp.282-291
    • /
    • 2023
  • Despite the recent progress in public health measures, malaria remains a troublesome disease that needs to be eradicated. It is essential to develop new antimalarial medications that are reliable and secure. This report evaluated the pharmacokinetics and antimalarial activity of 1,2,6,7-tetraoxaspiro[7.11]nonadecane (N-89) using the rodent malaria parasite Plasmodium berghei in vivo. After a single oral dose (75 mg /kg) of N-89, its pharmacokinetic parameters were measured, and t1/2 was 0.97 h, Tmax was 0.75 h, and bioavailability was 7.01%. A plasma concentration of 8.1 ng/ml of N-89 was maintained for 8 h but could not be detected at 10 h. The dose inhibiting 50% of parasite growth (ED50) and ED90 values of oral N-89 obtained following a 4-day suppressive test were 20 and 40 mg/kg, respectively. Based on the plasma concentration of N-89, we evaluated the antimalarial activity and cure effects of oral N-89 at a dose of 75 mg/kg 3 times daily for 3 consecutive days in mice harboring more than 0.5% parasitemia. In all the N-89-treated groups, the parasites were eliminated on day 5 post-treatment, and all mice recovered without a parasite recurrence for 30 days. Additionally, administering oral N-89 at a low dose of 50 mg/kg was sufficient to cure mice from day 6 without parasite recurrence. This work was the first to investigate the pharmacokinetic characteristics and antimalarial activity of N-89 as an oral drug. In the future, the following steps should be focused on developing N-89 for malaria treatments; its administration schedule and metabolic pathways should be investigated.