• Title/Summary/Keyword: PHBV

Search Result 26, Processing Time 0.021 seconds

Fabrication and Characterization of Thermo-responsive Nanofibrous Surfaces Using Electron Beam Irradiation (전자선 조사에 의한 온도응답성 나노섬유 표면의 제조 및 특성분석)

  • Jeon, Hyeon-Ae;Oh, Hwan-Hee;Kim, Young-Jin;Ko, Jae-Eok;Chung, Ho-Yun;Kang, Inn-Kyu;Kim, Won-Il;Kwon, Oh-Hyeong
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.359-365
    • /
    • 2008
  • We have fabricated a novel thermo-responsive nanofibrous surfaces by grafting PIPAAm by electron beam irradiation onto poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV) nanofibrous mats. The electrospun PHBV nanofiber structures revealed randomly aligned fibers with average diameter of 400 nm. Increased atomic percent of nitrogen was observed on the PIPAAm-grafted PHBV mats after electron beam irradiation determined by ESCA. The amounts of PIPAAm-grafted onto PHBV films were $6.49{\mu}g/cm^2$ determined by ATR-FTIR. The PIPAAm-grafted surfaces exhibited decreasing contact angles by lowering the temperature from 37 to $20^{\circ}C$, while ungrafted PHBV surfaces had negligible contact angle change. This result indicates that PIPAAm surfaces, which are hydrophobic at the higher temperature, became markedly more hydrophilic in response to a temperature reduction due to spontaneous hydration of the surface-grafted PIPAAm. Thermo-responsive nanofibers showed good tissue compatibility. Cultured cells were well detached and recovered from the surfaces by changing culture temperature from 37 to $20^{\circ}C$.

Effect of Nitrogen Source on the Growth of Azotobacter vinelandii UWD and Production of Biodegradable Plastics in the Mixture of Organic Acids and Glucose (유기산 및 포도당 혼합배지에서 Azotobacter vinelandii UWD의 생장 및 생분해성 고분자 생산에 대한 질소원의 영향)

  • 박창호
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.626-630
    • /
    • 1998
  • Ammonium limitation did not promote ply(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) production of Azotobacter vinelandii UWD. In acid phase, ammonium limitation during utilization of propionic acid and butyric acid led to 35% decrease in product yield. In glucose phase, both biomass yield and polymer yield decreased about 22% under ammonium limitation. However, in nitrogen-fixing culture glucose was consumed 25% faster and the final PHBV wt% decreased slightly. Under nitrogen limitation a portion of the carbon sources was used fro nitrogen fixation rather than biomass and polymer formation, resulting in a decrease in biomass yield and polymer yield.

  • PDF

Production of Biodegradable Plastics, Poly (3-Hydroxybutyrate-Co-3-Hydroxyvalerate) from Organic Aicd Mixtures and Swine Waste (유기산 혼합물 및 돈사폐수를 이용한 Poly (3-Hydroxybutyrate-Co-3-Hydroxyvalerate)의 생산)

  • 박창호
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.615-620
    • /
    • 1998
  • The readily fermentable carbon sources in swine were acetic acid, propionic acid and butyric acid at the average concentrations of 7.2 g/L, 2.2 g/L and 2.7 g/L, respectively. The swine waste also contained excess nitrogen and other mineral sources. In shake flask experiments, the optimal range of cell growth for Azotobacter vinelandii UWD were 1.0∼3.5 g/L of acetic acid, 0.7∼2.0 g/L of propionic acid and 0.5∼2.0 g/L of butyric acid. A mixture of these three acids simulating two times diluted swine waste supported the best cell growth but the amount of carbon sources was limited. In shake flask and fermentor experiments, an addition of 30 g/L of glucose increased the final cell dry weight 8 times while the final poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) concentration increased 86 times compared with using acid mixture only. A. vinelandii UWD preferred organic acids in the sequence of acetic acid, propionic acid, butyric acid, and valeric acid.

  • PDF

Mechanical and Water Barrier Properties of Biopolyester Films Prepared by Thermo-Compression

  • Rhim, Jong-Whan
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.62-66
    • /
    • 2007
  • Four different biopolyester films, two aliphatic polyesters including polylactides (PLA) and poly(3-hydroxy-butyrate-co-3-hydroxyvalerate (PHBV), and two aliphatic-aromatic copolyesters including Ecoplex and Biomax, were prepared using by thermo-compression, and their tensile and water barrier properties were determined. Among the films tested, PLA film was the most transparent (T: 95.8%), strongest, and stiffest (TS, 40.98 MPa; E, 1916 MPa), however it was rather brittle. In contrast, Ecoplex film was translucent while being the most flexible and resilient (EB, 766.8%). Biomax film was semitransparent and was the most brittle film tested (EB, 0.03%). All biopolyester films were water resistant exhibiting very low water solubility (WS) values ranging from 0.0.3 to 0.36%. PHBV film showed the lowest water vapor permeability (WVP) value ($1.26{\times}10^{-11}\;g{\cdot}m/m^2{\cdot}sec{\cdot}Pa$) followed by Biomax, PLA, and Ecoflex films, respectively. The water vapor barrier properties of each film were approximately 100 times higher than those of carbohydrate or protein-based films, but about 100 times lower than those of commodity polyolefin films such as low-density polyethylene (LDPE) or polypropylene (PP).

Wetting Properties of Biopolyester Films Prepared by Thermo-Compression Method

  • Rhim, Jong-Whan;Hong, Seok-In
    • Food Science and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.234-237
    • /
    • 2007
  • Water resistance of three biopolyester films, such as poly-L-lactate (PLA), poly-hydroxybutyrate-co-valerate (PHBV), and Ecoflex, and low density polyethylene (LDPE) film was investigated by measuring contact angle of various probe liquids on the films. The properties measured were initial contact angle of water, dynamic change of the water contact angle with time, and the critical surface energy of the films. Water contact angle of the biopolyester films ($57.62-68.76^{\circ}$) was lower than that of LDPE film ($85.19^{\circ}$) indicating biopolyester films are less hydrophobic. The result of dynamic change of water contact angle also showed that the biopolyester films are less water resistant than LDPE film, but much more water resistant than cellulose-based packaging materials. Apparent critical surface energy for the biopolyester films (35.15-38.55 mN/m) was higher than that of LDPE film (28.59 mN/m) indicating LDPE film is more hydrophobic.