• Title/Summary/Keyword: PHB biosynthesis

Search Result 22, Processing Time 0.039 seconds

Increased Poly(3-Hydroxybutyrate) Accumulation in Recombinant Escherichia coli from Whey by Agitation Speed Control

  • Kim, Beom-Soo;Brian K. O'Neill;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.5
    • /
    • pp.628-631
    • /
    • 2000
  • The timing of poly(3-Hydroxybutyrate) (PHB) biosynthesis was controlled by varying the agitation speed of a stirred tank fermentor during the pH-stat fed-batch culture of recombinant Escherichia coli strain GCSC 6576 harboring pSYL107. Using a concentrated whey solution containing ca. 200 g/l lactose as the nutrient feed, the PHB content was only 57% after 35h due to volumetric limitation of the fermentor. However, by limiting the oxygen by maintaining the agitation speed at 300 rpm, the final PHB content increased to 70% after 70h with a cell concentration of 15 g/l. When the agitation speed was increased up to 500 rpm, a cell concentration of 31 g/l with 80% PHB was obtained after 52h. A further increase in the maximum agitation speed increased the cell concentration, PHB concentration, and PHB productivity, however, the PHB content decreased to 56-58%.

  • PDF

Periodic Change in DO Concentration for Efficient Poly-${\beta}$-hydroxy-butyrate Production Using Temperature-inducible Recombinant Escherichia coli with Proteome Analysis

  • Abdul Rahman, Nor Aini;Shirai, Yoshihito;Shimizu, Kazuyuki;Hassan, Mohd Ali
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.5
    • /
    • pp.281-288
    • /
    • 2002
  • Recombinant Escherichia coli strain harboring the ${\lambda}$pR-pL promotor and heterologus poly-${\beta}$-hydroxybutyrate (PHB) biosynthesis genes was used to investigate the effect of culture conditions on the efficient PHB production. The expression of phb genes was induced by a temperature upshift from $33^{\circ}C\;to\;38^{\circ}C$. The protein expression levels were measured by using two-dimensional electrophoresis, and the enzyme activities were also measured to understand the effect of culture temperature, carbon sources, and the dissolved oxygen (DO) concentration on the metabolic regulations. AcetylCoA is an important branch point for PHB production. The decrease in DO concentration lowers the citrate synthase activity, thus limit the flux toward the TCA cycle, and increase the flux for PHB production. Since NADPH is required for PHB production, the PHB production does not continue leading the overproduction of acetate and lac-tate. Based on these observations, a new operation was considered where DO concentration was changed periodically, and it was verified its usefulness for the efficient PHB production by experiments.

Optimization of Fed-Batch Fermentation for Production of Poly-$\beta$-Hydroxybutyrate in Alcaligenes eutrophus

  • Lee, In-Young;Choi, Eun-Soo;Kim, Guk-Jin;Nam, Soo-Wan;Shin, Yong-Cheol;Chang, Ho-Nam;Park, Young-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.2
    • /
    • pp.146-150
    • /
    • 1994
  • Production of poly-$\beta$-hydroxybutyrate (PHB) in fed-batch fermentation was studied. Utilization of carbon for PHB biosynthesis was investigated by using feeding solutions with different ratios of carbon to nitrogen (C/N). It was observed that at a high C/N ratio carbon source was more preferably utilized for PHB accumulation while its consumption for cellular metabolism appeared to be more favored at a low C/N value. A high cell concentration (184 g/l) was achieved when ammonium hydroxide solution was fed to control the pH, which was also utilized as the sole nitrogen source. For the mass production of PHB, two-stage fed-batch operations were carried out where PHB accumulation was observed to be stimulated by switching the ammonium feeding mode to the nitrogen limiting condition. A large amount of PHB (108 g/l) was obtained with cellular content of 80% within 50 hrs of operation.

  • PDF

The Study on the Optimum Culture Conditions and Effects of by-products of A. eutrophus for the Biosynthesis of PHB (PHB 합성을 위한 A. eutrophus의 최적 배양 조건 및 부생성물의 영향 고찰)

  • 오준택;이동건김우식
    • KSBB Journal
    • /
    • v.9 no.5
    • /
    • pp.475-482
    • /
    • 1994
  • To find out the optimum conditions for the cell growth and the synthesis of PHB in A. eutrophus, the effects of culture conditions and extracellular by-products were investigated. Glucose and$>(NH_4)_2HP0_4$were optimum carbon and nitrogen sources, respectively for cell growth of A. eutrophus. PHB accumulation was stimulated by deficiency of nutrients such as $>NH_4^{3-}, P0_4^{3-}, and Mg^{2+}$ in the medium. $>NH_4^+$, deficiency was the most suitable for PHB accumulation and PHB accumulation ratio was reached 42% of dry cell weight. The specific growth rate was increased 1.5 times by addition yeast extract in the medium, and proteins and vitamins are supposed a main factor of that effect. The extracellular products such as ethanol and butanediol were excreted under anaerobic conditions. And ethanol was found to decrease the specific growth rate.

  • PDF

Recovery of Poly(3-hydroxybutyrate) from Recombinant Escherichia coli by Autolysis with Bacteriophage Lambda (박테리오파아지의 세포용해작용을 이용한 재조합 대장균으로부터의 Poly(3-hydroxybutyrate) 회수)

  • 정옥희;한세광장용근이상엽
    • KSBB Journal
    • /
    • v.10 no.5
    • /
    • pp.533-539
    • /
    • 1995
  • An autolytic system based on a thermally inducible phage lambda, λHL1, has been applied for the recovery of poly(3-hydroxybutyrate) [PHB] from a recombinant Escherichia coli XL1-Blue, harbouring a plasmid (pSYL105) containing the Alcaligenes eutrophus PHB biosynthesis genes. The lytic capability ofλHL1 was evaluated in flask culture for both lysogens, XL1-Blue (λHL1) and XL1-Blue (λHL1, pSYL105). When the optical density of culture at 600nm(OD600) reached 0.2, cell lysis was induced by increasing the temperature from $30^{\circ}C$ to $42^{\circ}C$. Most cells of XL1-Blue ($\lambda$HL1) were lysed by the autolytic system in an hour after the thermal induction, while the lytic efficiency was slightly lower for XLl-Blue (λHL1, pSYL105). The existence of pSYL105 in cells seemed to inhibit, to some extent, the lytic capability of λHL1 even at low PHB content. The lylic efficiency remarkably decreased as the induction was delayed to allow PHB accumulation. When a chemical induction using 2% (v/v) chloroform was introduced after an hours of thermal induction, we could obtain a good lytic efficiency.

  • PDF

Production of Poly(3-hydroxybutyrate) Using Waste Frying Oil (Waste frying oil를 사용한 Poly(3-Hydroxybutyrate) 생합성)

  • Kim, Tae-Gyeong;Lee, Woosung;Gang, Seongho;Kim, Jong-Sik;Chung, Chung-Wook
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.76-83
    • /
    • 2019
  • In this study, the optimal growth and poly(3-hydroxybutyrate) (PHB) biosynthesis of Pseudomonas sp. EML2 were established using waste frying oil (WFO) as a cheap carbon source. The fatty acid composition of WFO and fresh frying oil (FFO) were analyzed by gas chromatography. The unsaturated and saturated fatty acid contents of the FFO were 82.6% and 14.9%, respectively. These contents changed in the WFO. The compositional change in the unsaturated fatty acid content in the WFO was due to a change in its chemical and physical properties resulting from heating, an oxidation reaction, and hydrolysis. The maximum dry cell weight (DCW) and PHB yield (g/l) of the isolated strain Pseudomonas sp. EML2 were confirmed under the following culture conditions: 30 g/l of WFO, 0.5 gl of $NH_4Cl$, pH 7, and $20^{\circ}C$. Based on this, the growth and PHB yield of Pseudomonas sp. EML2 were confirmed by 3 l jar fermentation. After the cells were cultured in 30 g/l of WFO for 96 h, the DCW, PHB content, and PHB yield of Pseudomonas sp. EML2 were 3.6 g/l, 73 wt%, and 2.6 g/l, respectively. Similar results were obtained using 30 g/l of FFO as a carbon source control. Using the FFO, the DCW, PHB content, and PHB yield were 3.4 g/l, 70 wt%, and 2.4 g/l, respectively. Pseudomonas sp. EML2 and WFO may be a new candidate and substrate, respectively, for industrial production of PHB.

The Studies of Copolymer, Poly (3-hydroxybutyrate-co-3-hydroxy valerate) Synthesis in Recombinant pha+ Escherichia coli

  • Lee, Ha-Young;Rhie, Ho-Gun
    • Proceedings of the Zoological Society Korea Conference
    • /
    • 1996.10a
    • /
    • pp.195.2-195
    • /
    • 1996
  • acs gene cloning was constructed by subcloning the 2.2-kb MunI-MunI restriction fragment of 638 and 639 which include acs gene from the kohara phage into the unique EcoRI site of pUC18 and pJM9131 containing the PHA biosynthesis genes. Then recombinant E. coli fadRatoC(Con) mutants containing the polyhydroxyalkanoate(PHA) biosynthesis genes are able to incoporate s significant levels of 3-hydroxyvalerate (3HV) into the copolymer [P(3HB-co-3HV)]. Quantitative determination of PHB and P(3HB-co-3HV) was performed by gas-chromatographic analysis of extracts obtained from methanolysis of lyophilized cells.

  • PDF

Crystal Structure of Mesaconyl-CoA Hydratase from Methylorubrum extorquens CM4

  • Jae-Woo Ahn;Jiyeon Hong;Kyung-Jin Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.485-492
    • /
    • 2023
  • Methylorubrum extorquens, a facultative methylotroph, assimilates C1 compounds and accumulates poly-β-hydroxylbutyrate (PHB) as carbon and energy sources. The ethylmalonyl pathway is central to the carbon metabolism of M. extorquens, and is linked with a serine cycle and a PHB biosynthesis pathway. Understanding the ethylmalonyl pathway is vital in utilizing methylotrophs to produce value-added chemicals. In this study, we determined the crystal structure of the mesaconyl-CoA hydratase from M. extorquens (MeMeaC) that catalyzes the reversible conversion of mesaconyl-CoA to β-methylmalyl-CoA. The crystal structure of MeMeaC revealed that the enzyme belongs to the MaoC-like dehydratase domain superfamily and functions as a trimer. In our current MeMeaC structure, malic acid occupied the substrate binding site, which reveals how MeMeaC recognizes the β-methylmalyl-moiety of its substrate. The active site of the enzyme was further speculated by comparing its structure with those of other MaoC-like hydratases.

Pilot Scale Production of (R)-3-Hydroxybutyric acid by Metabolically Engineered Escherichia coli. (Pilot 규모에서의 재조합 대장균을 이용한 (R)-3-Hydroxybutyric acid 생산)

  • 최종일;이승환;최성준;이상엽
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.3
    • /
    • pp.243-248
    • /
    • 2004
  • Production of (R)-3-hydroxybutyric acid (R3HB) by fed-batch culture and continuous culture of metabolically engineered Escherichia coli harboring Ralstonia eutropha PHB biosynthesis and depolymerase genes was examined in a 30 1 pilot-scale fermentor. A new stable two-plasmid system, pBRRed containing the R. eutropha PHB depolymerase gene and pMCS 105 containing the R. eutropha PHB biosynthesis genes, was developed. Among a variety of E. coli strains harboring plasmids, recombinant E. coli XL-10 Gold (pBRRed, pMCS105) was able to produce R3HB with the highest efficiency in a batch culture. By the fed-batch culture of recombinant E. coli XL-10 Gold(pBRRed, pMCS 105) in a 30 1 fer-mentor, the final R3HB concentration was 22.4 g/l giving a productivity of 0.97 g/l-h. To produce R3HB to a high concentration with high productivity, a new strategy of fed-batch culture followed by a continuous culture was investigated. The maximum productivity and R3HB concentration were 5.06 g/l-h and 25.3 g/l, respectively. These results show that economical production of R3HB is possible by recombinant E. coli in large scale.

Isolation of a Pseudomonas sp. Strain Exhibiting Unusual Behavior of Poly(3-hydroxyalkanoates) Biosynthesis and Characterization of Synthesized Polyesters

  • Chung, Chung-Wook;Kim, Yoon-Seok;Kim, Young-Baek;Bae, Kyung-Sook;Rhee, Young-Ha
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.847-853
    • /
    • 1999
  • A Pseudomonas sp. strain that is capable of utilizing dicarboxylic acids as a sole carbon source was isolated from activated sludge by using the enrichment culture technique. This organism accumulated polyhydroxyalkanoates (PHAs) with an unusual pattern of monomer units that depends on the carbon sources used. Polyhydroxybutyrate (PHB) homopolyester was synthesized from glucose or small $C_{-even}$ alkanoic acids, such as butyric acid and hexanoic acid. Accumulation of PHB homopolyester was also observed in the cells grown on $C_{-odd}$ dicarboxylic acids, such as heptanedioic acid and nonanedioic acid as the sole carbon sources. In contrast, a copolyester consisting of 6 mol% 3-hydroxybutyrate (3HB) and 94 mol% 3-hydroxyvalerate (3HV) was produced with a PHA content of as much as 36% of the cellular dry matter. This strain produced PHAs consisting both of the short-chain-length (SCL) and the medium-chain-length (MCL) 3-hydroxyacid units when heptanoic acid to undecanoic acid were fed as the sole carbon sources. Most interestingly, polyester consisting of significant amount of relevant fractions, 3HB, 3HV, and 3-hydroxyheptanoate (3HHp), was accumulated from heptanoic acid. According to solvent fractionation experiments, the polymer produced from heptanoic acid was a blend of poly(3HHp) and of a copolyester of 3HB, 3HV, and 3HHp units. The hexane soluble fractions contained only 3HHp units while the hexane-insoluble fractions contained 3HB and 3HV units with a small amount of 3HHp unit. The copolyester was an elastomer with unusual mechanical properties. The maximum elongation ratio of the copolyester was 460% with an ultimate strength of 10 MPa, which was very different from those of poly(3HB-co-3HV) copolyesters having similar compositions produced from other microorganisms.

  • PDF