DOI QR코드

DOI QR Code

Crystal Structure of Mesaconyl-CoA Hydratase from Methylorubrum extorquens CM4

  • Jae-Woo Ahn (Postech Biotech Center, Pohang University of Science and Technology) ;
  • Jiyeon Hong (School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, KNU Institute for Microorganisms, Kyungpook National University) ;
  • Kyung-Jin Kim (School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, KNU Institute for Microorganisms, Kyungpook National University)
  • Received : 2022.12.02
  • Accepted : 2023.01.18
  • Published : 2023.04.28

Abstract

Methylorubrum extorquens, a facultative methylotroph, assimilates C1 compounds and accumulates poly-β-hydroxylbutyrate (PHB) as carbon and energy sources. The ethylmalonyl pathway is central to the carbon metabolism of M. extorquens, and is linked with a serine cycle and a PHB biosynthesis pathway. Understanding the ethylmalonyl pathway is vital in utilizing methylotrophs to produce value-added chemicals. In this study, we determined the crystal structure of the mesaconyl-CoA hydratase from M. extorquens (MeMeaC) that catalyzes the reversible conversion of mesaconyl-CoA to β-methylmalyl-CoA. The crystal structure of MeMeaC revealed that the enzyme belongs to the MaoC-like dehydratase domain superfamily and functions as a trimer. In our current MeMeaC structure, malic acid occupied the substrate binding site, which reveals how MeMeaC recognizes the β-methylmalyl-moiety of its substrate. The active site of the enzyme was further speculated by comparing its structure with those of other MaoC-like hydratases.

Keywords

Acknowledgement

This work was supported by the Cooperative Research Program for Agricultural Science & Technology Development (Project No. PJ01492602), Rural Development Administration, Republic of Korea, and also by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MIST, No. 2021R1C1C2004411); JW Ahn was supported by the Basic Science Research Program (No. 2020R1I1A1A01057880) and the Korea Initiative for fostering University of Research and Innovation Program (No.2020M3H1A1075314) through the National Research Foundation of Korea (NRF) funded by the Korean government.

References

  1. Anjum A, Zuber M, Zia KM, Noreen A, Anjum MN, Tabasum S. 2016. Microbial -production of polyhydroxyalkanoates (PHAs) and its copolymers: a review of recent advancements. Int. J. Biol. Macromol. 89: 161-174. https://doi.org/10.1016/j.ijbiomac.2016.04.069
  2. REHM BHA. 2003. Polyester synthases: natural catalysts for plastics. Biochem. J. 376: 15-33. https://doi.org/10.1042/bj20031254
  3. Lee SY. 1996. Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 49: 1-14. https://doi.org/10.1002/(SICI)1097-0290(19960105)49:1<1::AID-BIT1>3.0.CO;2-P
  4. Maehara A, Taguchi S, Nishiyama T, Yamane T, Doi Y. 2002. A repressor protein, PhaR, regulates Polyhydroxyalkanoate (PHA) synthesis via its direct interaction with PHA. J. Bacteriol. 184: 3992-4002. https://doi.org/10.1128/JB.184.14.3992-4002.2002
  5. Li M, Wilkins MR. 2020. Recent advances in polyhydroxyalkanoate production: feedstocks, strains and process developments. Int. J. Biol. Macromol. 156: 691-703. https://doi.org/10.1016/j.ijbiomac.2020.04.082
  6. Yoon J, Oh M-K. 2022. Strategies for Biosynthesis of C1 Gas-derived Polyhydroxyalkanoates: a review. Bioresour. Technol. 344: 126307.
  7. Salem A, Quayle J. 1971. Mutants of Pseudomonas AM1 that require glycollate or glyoxylate for growth on methanol or ethanol. Biochem. J. 124: 74P.
  8. Anthony C. 1982. The biochemistry of methylotrophs.
  9. Anderson AJ, Dawes E. 1990. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 54: 450-472. https://doi.org/10.1128/mr.54.4.450-472.1990
  10. Follner CG, Madkour M, Mayer F, Babel W, Steinbuchel A. 1997. Analysis of the PHA granule-associated proteins GA20. and GA11 in Methylobacterium extorquens and Methylobacterium rhodesianum. J. Basic Microbiol. 37: 11-21. https://doi.org/10.1002/jobm.3620370104
  11. Follner C, Babel W, Steinbuchel A. 1995. Isolation and purification of granule-associated proteins relevant for poly (3-hydroxybutyric acid) biosynthesis from methylotrophic bacteria relying on the serine pathway. Can. J. Microbiol. 41: 124-130. https://doi.org/10.1139/m95-178
  12. Alber BE. 2011. Biotechnological potential of the ethylmalonyl-CoA pathway. Appl. Microbiol. Biotechnol. 89: 17-25. https://doi.org/10.1007/s00253-010-2873-z
  13. Orita I, Unno G, Kato R, Fukui T. 2022. Biosynthesis of polyhydroxyalkanoate terpolymer from methanol via the reverse β-oxidation pathway in the presence of lanthanide. Microorganisms 10: 184.
  14. Korotkova N, Lidstrom ME, Chistoserdova L. 2005. Identification of genes involved in the glyoxylate regeneration cycle in Methylobacterium extorquens AM1, including two new genes, meaC and meaD. J. Bacteriol. 187: 1523-1526. https://doi.org/10.1128/JB.187.4.1523-1526.2005
  15. Zarzycki J, Schlichting A, Strychalsky N, Muller M, Alber BE, Fuchs G. 2008. Mesaconyl-coenzyme A hydratase, a new enzyme of two central carbon metabolic pathways in bacteria. J. Bacteriol. 190: 1366-1374. https://doi.org/10.1128/JB.01621-07
  16. Alber BE, Spanheimer R, Ebenau-Jehle C, Fuchs G. 2006. Study of an alternate glyoxylate cycle for acetate assimilation by Rhodobacter sphaeroides. Mol. Microbiol. 61: 297-309. https://doi.org/10.1111/j.1365-2958.2006.05238.x
  17. Vagin A, Teplyakov A. 1997. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 30: 1022-1025. https://doi.org/10.1107/S0021889897006766
  18. Langer G, Cohen SX, Lamzin VS, Perrakis A. 2008. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc. 3: 1171-1179. https://doi.org/10.1038/nprot.2008.91
  19. Emsley P, Lohkamp B, Scott WG, Cowtan K. 2010. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66: 486-501. https://doi.org/10.1107/S0907444910007493
  20. Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, et al. 2011. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67: 355-367. https://doi.org/10.1107/S0907444911001314
  21. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, et al. 2011. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67: 235-242. https://doi.org/10.1107/S0907444910045749
  22. Leesong M, Henderson BS, Gillig JR, Schwab JM, Smith JL. 1996. Structure of a dehydratase-isomerase from the bacterial pathway for biosynthesis of unsaturated fatty acids: two catalytic activities in one active site. Structure 4: 253-264. https://doi.org/10.1016/S0969-2126(96)00030-5
  23. Krissinel E, Henrick K. 2007. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372: 774-797. https://doi.org/10.1016/j.jmb.2007.05.022
  24. Koski MK, Haapalainen AM, Hiltunen JK, Glumoff T. 2004. A two-domain structure of one subunit explains unique features of eukaryotic hydratase 2. J. Biol. Chem. 279: 24666-24672. https://doi.org/10.1074/jbc.M400293200
  25. Yang M, Guja KE, Thomas ST, Garcia-Diaz M, Sampson NS. 2014. A distinct MaoC-like enoyl-CoA hydratase architecture mediates cholesterol catabolism in Mycobacterium tuberculosis. ACS Chem. Biol. 9: 2632-2645. https://doi.org/10.1021/cb500232h
  26. Wang H, Zhang K, Zhu J, Song W, Zhao L, Zhang X. 2013. Structure reveals regulatory mechanisms of a MaoC-like hydratase from Phytophthora capsici involved in biosynthesis of polyhydroxyalkanoates (PHAs). PLoS One 8: e80024.
  27. Hisano T, Tsuge T, Fukui T, Iwata T, Miki K, Doi Y. 2003. Crystal structure of the (R)-specific enoyl-CoA hydratase from Aeromonas caviae involved in polyhydroxyalkanoate biosynthesis. J. Biol. Chem. 278: 617-624. https://doi.org/10.1074/jbc.M205484200
  28. Large PJ, Peel D, Quayle JR. 1961. Microbial growth on C1 compounds. 2. Synthesis of cell constituents by methanol- and formategrown Pseudomonas AM1, and methanol-grown Hyphomicrobium vulgare. Biochem. J. 81: 470-480. https://doi.org/10.1042/bj0810470
  29. Chistoserdova L, Kalyuzhnaya MG, Lidstrom ME. 2009. The expanding world of methylotrophic metabolism. Annu. Rev. Microbiol. 63: 477-499. https://doi.org/10.1146/annurev.micro.091208.073600
  30. Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view. Available from https://journals.asm.org/doi/epub/10.1128/JB.185.10.2980-2987.2003. Accessed Jan. 12, 2023.
  31. doi:10.1016/j.tibtech.2008.10.009 | Elsevier Enhanced Reader. Available from https://reader.elsevier.com/reader/sd/pii/S0167779908002898?token=080122F0091F67B57D1E09C3DA5792545830DF0EF19375E6927C629DACB1FB721F33D5D75AC11AA6A96ECA012846DAE9&originRegion=us-east-1&originCreation=20230112055724. Accessed Jan. 12, 2023.