Pilot Scale Production of (R)-3-Hydroxybutyric acid by Metabolically Engineered Escherichia coli.

Pilot 규모에서의 재조합 대장균을 이용한 (R)-3-Hydroxybutyric acid 생산

  • 최종일 (한국과학기술원 생명화학공학과) ;
  • 이승환 (한국과학기술원 생명화학공학과) ;
  • 최성준 (한국과학기술원 생명화학공학과) ;
  • 이상엽 (한국과학기술원 생명화학공학과, 한국과학기술원 바이오시스템학과)
  • Published : 2004.09.01

Abstract

Production of (R)-3-hydroxybutyric acid (R3HB) by fed-batch culture and continuous culture of metabolically engineered Escherichia coli harboring Ralstonia eutropha PHB biosynthesis and depolymerase genes was examined in a 30 1 pilot-scale fermentor. A new stable two-plasmid system, pBRRed containing the R. eutropha PHB depolymerase gene and pMCS 105 containing the R. eutropha PHB biosynthesis genes, was developed. Among a variety of E. coli strains harboring plasmids, recombinant E. coli XL-10 Gold (pBRRed, pMCS105) was able to produce R3HB with the highest efficiency in a batch culture. By the fed-batch culture of recombinant E. coli XL-10 Gold(pBRRed, pMCS 105) in a 30 1 fer-mentor, the final R3HB concentration was 22.4 g/l giving a productivity of 0.97 g/l-h. To produce R3HB to a high concentration with high productivity, a new strategy of fed-batch culture followed by a continuous culture was investigated. The maximum productivity and R3HB concentration were 5.06 g/l-h and 25.3 g/l, respectively. These results show that economical production of R3HB is possible by recombinant E. coli in large scale.

산업적 R3HB의 생산을 위한 재조합 대장균의 pilot규모에서의 유가식 배양과 연속식 배양을 연구하였다. Pilot 규모에서의 R3HB생산을 위하여 안전한 two plasmid system pBRRed와 pMCS 105를 제작하였으며, 제작된 plasmids을 이용하여 여러 다른 대장균을 형질 전환하였다. 얻어진 재조합 대장균들을 30 l의 발효기에서 회분식 배양한 결과 대장균 XL-10 Gold(pBRRed, pMCS105)가 가장 높은 R3HB 농도를 보였다 30 1 발효기에서 대장균 XL-10 Gold (pBRRed, PMCS105)을 유가식 배양한 결과 22.4 g/1의 R3HB가 얻어졌으며, 생산성은 0.97 g/1-h를 보였다. 고농도의 R3HB를 고생산성으로 얻기 위하여 유가식 배양으로 높은 균체 농도를 얻은 후 연속 배양으로 R3HB를 생산하는 전략을 개발하였다. 그 결과 0.2 $h^{-1}$ 의 dilution rate에서 R3HB 생산성은 5.06 g/1-h를 보였다. 이러한 결과는 산업적 규모에서 재조합 대장균을 이용하여 R3HB를 고농도, 고생산성으로 얻을 수 있다는 것을 보여준다.

Keywords

References

  1. Chem. Lett. A synthetic approach to (+)-thirnamycin from methylene (R)-3-hydroxybutanoate Chiba, T.;T. Nakai
  2. Biotechnol. Bioprocess Eng. v.7 Pilot Scale Production of Poly(3-Hydroxy-valerate) by Fed-bacth Culture of Recombinant Escherichia coli Choi, J.;S. Y. Lee;K. S. Shin;W. G. Lee;S. J. Park;H. N. Chang;Y. K. Chang https://doi.org/10.1007/BF02933524
  3. HwahakGonghak Simulation and economic evaluation of a process for the production of enantiomerically pure (R)-3-hydroxybutyrate from biopolymer poly(3-hydroxybutyrate) Choi, J.;Y. Lee;S. Y. Lee
  4. Gene v.166 Four new derivatives of the broad-host-range cloning vector pBBIMCS, carrying different antibiotic-resistance cassettes Kovach, M. E.;P. H. Elzar;D, S. Hill;G. T. Rodertson;M. A. Farris;R. M. Roop II;K. M. Peterson https://doi.org/10.1016/0378-1119(95)00584-1
  5. Biotechnol. Bioeng. v.49 Bacterial polyhydeoxyalkanostes Lee, S. Y. https://doi.org/10.1002/(SICI)1097-0290(19960105)49:1<1::AID-BIT1>3.0.CO;2-P
  6. Biotechnol. Bioeng. v.44 Comparison of recombinant Escherichia coli stains fdr dynthesis and accumlation of poly-(3-hdroxybutyric acid), and morphological changes Lee, S, Y.;K. M. Lee;H. N. Chang;A. Steinbuchel https://doi.org/10.1002/bit.260441110
  7. Appl. Environ. Microbiol. v.69 Metabolic engineering of Escherichia coli for production of enanttiomerically pure(R)-(-)-hydroxycarboxylic acids Lee, S. Y.;Y. Lee https://doi.org/10.1128/AEM.69.6.3421-3426.2003
  8. Biotechnol. Bioeng. v.65 Chiral compounds from bacterial polyesters: sugars to plastics to fine chemicals Lee, S. Y.;Y. Lee;F. Wang. https://doi.org/10.1002/(SICI)1097-0290(19991105)65:3<363::AID-BIT15>3.0.CO;2-1
  9. Enzyme Microb. Teachnol. v.27 Preparation of alkyl (R)-(-)-3-hydroxybutyrate by acidic alcoholysis of poly-(R)-(-)-3-hydroxybutyrate Lee, Y.;S. H. Park;I. T. Lim;K. Han;S. Y. Lee https://doi.org/10.1016/S0141-0229(00)00146-0
  10. Microbiol. Mol. Biol. Rev. v.63 Metabolic engineering of poly(3-hydroxyalkanoates):from DNA to plastic Madison, L. L.;G. W. Huisman
  11. Ullmanns Encyclopedia of Industial Chemisty(5th ed.) Hydroxycarboxylic acid, aliphatic Miltenberger, K.;H. Aktiengesellschaft;H,-J. Arpe.(Ed.);E. Biekert(Ed.);H. T. Davis(Ed.);W. Gerharz(Ed.);H. Gerrens(Ed.);W. Keim(Ed.);J. L. McGuire(Ed.);A. Mitsutani(Ed.);H. Pilat(Ed.);Sir C. Reece(Ed.);D. P. Sheetz(Ed.);H. E. Simmons(Ed.);E. Weise(Ed.);R. Wirtz(Ed.);H.-R.Wuthrich(Ed.)
  12. J. Bacteriol. v.183 Cloning of an intracellular poly[D(-)-3-hydroxybutyrate]depolymerase gene from Ralstonia eutropha H16 and chatacterization of the gene product Saegusa, H.;M. Shiraki.;C. Kanai;T. Saito https://doi.org/10.1128/JB.183.1.94-100.2001
  13. Molecular cloning:a laboratory manual(3rd ed.) Cold Spring Harbor laboratory Sambrook, J.;D. W. Russell
  14. Liebigs Ann. Chem. Total synthesis of (+)-colletodiol from (S,S)-tartarate and (R)-3-hydroxybutanoate Schnurrenberger,P.;E. Hungerbuhler;D. Seebach
  15. Org. Synth. v.71 Direct degration of the biopolymer poly[(R)-3-hydroxybutyric acid]to (R)-3-hydroxybutanoic acid and its methyl ester Seebach, D.;A. K. Beck;R. Breitschuh;K. Job
  16. Helvetica Chim. Acta v.65 Uber die depolymerisierung von poly-(R)-3-hydroxy-buttersaureester(PHB) Seebach, D;M. F. Zuger https://doi.org/10.1002/hlca.19820650208
  17. Trends Biotechnol. v.16 Bacterial and other biological systems for polyester production Steinbuchel, A.;B. Fuchtenbusch https://doi.org/10.1016/S0167-7799(98)01194-9
  18. FEMS Microbiol. Lett. v.128 Diversity of bacterial polyhydroxyalkanoic acids Steinbuchel, A.;H. E. Valentin https://doi.org/10.1111/j.1574-6968.1995.tb07528.x