• Title/Summary/Keyword: PGA(Peak Ground Acceleration)

Search Result 111, Processing Time 0.026 seconds

Seismicity of Peninsular Malaysia due to intraplate and far field sources

  • Loi, Daniel W.;Raghunandan, Mavinakere E.;Swamy, Varghese
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1391-1404
    • /
    • 2016
  • Peninsular Malaysia lying on the stable Sunda Plate has traditionally been considered safe with low to moderate seismicity. However, far field Sumatran mega-earthquakes have been shown to be capable of triggering ground motions felt in high rise structures in the major Malaysian cities while seismic impact from local earthquakes of moment magnitude 3.8 have reportedly induced nominal structural damages to nearby buildings. This paper presents an overview of the recent seismic activities in and around Peninsular Malaysia with reference to prominent earthquakes generated by far field interplate and local intraplate sources. Records of ground motion data and seismic hazard assessment (SHA) results available in the literature have been analyzed and discussed. The peak ground acceleration (PGA) values from historical records for few local intraplate events were observed to be higher than those for the events from Sumatran Subduction Zone. This clearly points to the need for a detailed and comprehensive SHA incorporating both far field and local sources. Such an analysis would contribute the knowledge required for secure and reliable infrastructure design and safeguard the Malaysian people and economy.

Acceleration amplification characteristics of embankment reinforced with rubble mound

  • Jung-Won Yun;Jin-Tae Han;Jae-Kwang Ahn
    • Geomechanics and Engineering
    • /
    • v.36 no.2
    • /
    • pp.157-166
    • /
    • 2024
  • Generally, the rubble mound installed on the slope embankment of the open-type wharf is designed based on the impact of wave force, with no consideration for the impact of seismic force. Therefore, in this study, dynamic centrifuge model test results were analyzed to examine the acceleration amplification of embankment reinforced with rubble mound under seismic conditions. The experimental results show that when rubble mounds were installed on the ground surface of the embankment, acceleration response of embankment decreased by approximately 22%, and imbalance in ground settlement decreased significantly from eight to two times. Furthermore, based on the experimental results, one-dimensional site response (1DSR) analyses were conducted. The analysis results indicated that reinforcing the embankment with rubble mound can decrease the peak ground acceleration (PGA) and short period response (below 0.6 seconds) of the ground surface by approximately 28%. However, no significant impact on the long period response (above 0.6 seconds) was observed. Additionally, in ground with lower relative density, a significant decrease in response and wide range of reduced periods were observed. Considering that the reduced short period range corresponds to the critical periods in the design response spectrum, reinforcing the loose ground with rubble mound can effectively decrease the acceleration response of the ground surface.

Seismic Fragility Curves for Multi-Span Concrete Bridges (다경간 콘크리트 교량의 지진 취약도)

  • Kim, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.35-47
    • /
    • 2003
  • Seismic ground motion can vary significantly over distances comparable to the length of a majority of highway bridges on multiple supports. This paper presents results of fragility analysis of two actual highway bridges under ground motion with spatial variation. Ground motion time histories are artificially generated with different amplitudes, phases, as well as frequency contents at different support locations. Monte Carlo simulation is performed to study dynamic responses of the bridges under these ground motions. The effect of spatial variation on the seismic response is systematically examined and the resulting fragility curves are compared with those under identical support ground motion. This study shows that ductility demands for the bridge columns can be underestimated if the bridge is analyzed using identical support ground motions rather than differential support ground motions. Fragility curves are developed as functions of different measures of ground motion intensity including peak ground acceleration(PGA), peak ground velocity(PGV), spectral acceleration(SA), spectral velocity(SV) and spectral intensity(SI). This study represents a first attempt to develop fragility curves under spatially varying ground motion and provides information useful for improvement of the current seismic design codes so as to account for the effects of spatial variation in the seismic design of long-span bridges.

Relationship between Phase Properties, Significant Duration and PGA from the Earthquake Records of Mw 5.5~6.5 (Mw 5.5~6.5 지진동의 위상특성과 계속시간 및 PGA와의 관계)

  • Choi, Hang;Yoon, Byung Ick
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.55-70
    • /
    • 2019
  • The phase properties of ground acceleration records from Mw 5.5~6.5 earthquakes are analyzed. The interrelationships between phase properties and significant durations, as well as PGA, are clarified through both of theoretical and empirical approaches. The probabilistic characteristics of phase information is also discussed based on previous studies and it is shown that circular normal distribution is the most appropriate probability distribution for the phase angle and phase difference. Whereas those variates can be modeled by Gaussian random variables. From the survey results on the frequency dependency of the phase statistics, a simple model is introduced, which is possible to express the frequency dependency of phase information. It is also shown that the significant duration can be controlled by appropriately chosen standard deviation of phase difference for 4~8Hz frequency band and additional consideration of phase scattering in higher frequency band through a series of Monte Carlo simulations. The source of phase scattering effect is also pointed out and discussed.

Simulation method of ground motion matching for multiple targets and effects of fitting parameter variation on the distribution of PGD

  • Wang, Shaoqing;Yu, Ruifang;Li, Xiaojun;Lv, Hongshan
    • Earthquakes and Structures
    • /
    • v.16 no.5
    • /
    • pp.563-573
    • /
    • 2019
  • When generating spectrum-compatible artificial ground motion in engineering practices, the effect of the variation in fitting parameters on the distribution of the peak ground displacement (PGD) has not yet drawn enough attention. In this study, a method for simulating ground motion matching for multiple targets is developed. In this method, a frequency-dependent amplitude envelope function with statistical parameters is introduced to simulate the nonstationarity of the frequency in earthquake ground motion. Then, several groups of time-history acceleration with different temporal and spectral nonstationarities were generated to analyze the effect of nonstationary parameter variations on the distribution of PGD. The following conclusions are drawn from the results: (1) In the simulation of spectrum-compatible artificial ground motion, if the acceleration time-history is generated with random initial phases, the corresponding PGD distribution is quite discrete and an uncertain number of PGD values lower than the limit value are observed. Nevertheless, the mean values of PGD always meet the requirement in every group. (2) If the nonstationary frequencies of the ground motion are taken into account when fitting the target spectrum, the corresponding PGD values will increase. A correlation analysis shows that the change in the mean and the dispersion values, from before the frequencies are controlled to after, correlates with the modal parameters of the predominant frequencies. (3) Extending the maximum period of the target spectrum will increase the corresponding PGD value and, simultaneously, decrease the PGD dispersion. Finally, in order to control the PGD effectively, the ground motion simulation method suggested in this study was revised to target a specified PGD. This novel method can generate ground motion that satisfies not only the required precision of the target spectrum, peak ground acceleration (PGA), and nonstationarity characteristics of the ground motion but also meets the required limit of the PGD, improving engineering practices.

Enhancement of Real-Time Transmission Performance of PGA data (PGA 데이터의 실시간 전송능력 향상)

  • Lim, In-Seub;Choi, In-Young;Jung, Soon-Key
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.2
    • /
    • pp.37-44
    • /
    • 2009
  • In this paper, we propose an efficient method which improves the performance of transmission of PGA which is essential data for real-time earthquake monitoring system. Currently, above 120 earthquake stations were installed nationwide and additional installation is expected because the social interesting of earthquake hazard is rising. Real-time earthquake monitoring system checks earthquake occurrence by using PGA were calculated from acceleration data of each seismic station. An efficient method of PGA data transmission is key factor of real-time monitoring. The key idea of proposed method is to deal with each seismic station using an unique ID, to assign one bit to indicate whether a packet include a station's data or not. Proposed method can contain more station data and decrease the data loss compared to current method. To verify proposed method, we investigate the turnaround time and ratio of data loss using above 91000 packets. As results of experiment. the proposed method is proven that the method need more time about 50% but reduce the data loss about 87% as compared to previous method.

Evaluation of pre-developed seismic fragility models of bored tunnels (기 개발된 굴착식 터널의 지진취약도 모델 적용성 평가)

  • Seunghoon Yang;Dongyoup Kwak
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.3
    • /
    • pp.187-200
    • /
    • 2023
  • This study analyzed the seismic fragility of bored tunnels based on their surrounding conditions and suggested a representative seismic fragility model. By analyzing the existed seismic fragility models developed for bored tunnels, we developed weighted combination models for each surrounding conditions, such as ground conditions and depth of the tunnel. The seismic fragility curves use the peak ground acceleration (PGA) as a parameter. When the PGA was 0.3 g, the probability of damage exceeding minor or slight damage was 20% for depth of 50 m or less, 10% for depth between 50 m and 100 m, and 3% for depth of 100 m or more. It was also found that the probability of damage was higher for the same PGA and depth when the surrounding ground was rock rather than soil. The probability of damage decreases as the depth increase. This study is expected to be used for developing a comprehensive seismic fragility function for tunnels in the future.

Design of Real-Time Ground Motion Monitoring System using MMA data (MMA 데이터를 이용한 실시간 지진동 감시 시스템 설계)

  • Lim, In-Seub;Song, Myung-Won;Jung, Soon-Key
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.5
    • /
    • pp.29-37
    • /
    • 2007
  • In this paper, we propose a new real-time ground motion monitoring system using MMA data which can be gathered more earlier than generic seismic data transmission method. Proposed system receives maximum, minimum and average data based on 20sps which is sent from station on every second continuously. And it calculates a PGA as a quantity of ground motion then visualizes that data to monitor the ground motion around whole country. To verify PGA data from MMA data, we checked Mu-dan-jang earthquake data of China on 2002/6/29. The proposed system was inspected by using log file of Oh-dae-san earthquake data on 2007/1/20. As results of experiment, the proposed system is proven to detect the event(earthquake) faster then existing method and to produce a useful quantitative information.

  • PDF

Preparation of Probabilistic Liquefaction Hazard Map Using Liquefaction Potential Index (액상화 가능 지수를 활용한 확률적 액상화 재해도)

  • Chung, Jae-won;Rogers, J. David
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1831-1836
    • /
    • 2014
  • Probabilistic liquefaction hazard map is now widely needed for engineering practice. Based on the Liquefaction Potential Index (LPI) calculated from liquefied and non-liquefied cases, we attempted to estimate probabilities of liquefaction induced ground failures using logistic regression. We then applied this approach for the regional area. LPIs were calculated based on 273 Standard Penetration Tests in the floodplains in the St. Louis area, USA and then interpolated using cokriging with the covariable of peak ground acceleration. Our result shows that some areas of $LPI{\geq}5$, due to soft soil layers and shallow groundwater table, appear probabilities of ground $failure{\geq}0.5$.

Site effects and associated structural damage analysis in Kathmandu Valley, Nepal

  • Gautam, Dipendra;Forte, Giovanni;Rodrigues, Hugo
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1013-1032
    • /
    • 2016
  • Several historical earthquakes demonstrated that local amplification and soil nonlinearity are responsible for the uneven damage pattern of the structures and lifelines. On April $25^{th}$ 2015 the Mw7.8 Gorkha earthquake stroke Nepal and neighboring countries, and caused extensive damages throughout Kathmandu valley. In this paper, comparative studies between equivalent-linear and nonlinear seismic site response analyses in five affected strategic locations are performed in order to relate the soil behavior with the observed structural damage. The acceleration response spectra and soil amplification are compared in both approaches and found that the nonlinear analysis better represented the observed damage scenario. Higher values of peak ground acceleration (PGA) and higher spectral acceleration have characterized the intense damage in three study sites and the lower values have also shown agreement with less to insignificant damages in the other two sites. In equivalent linear analysis PGA varies between 0.29 to 0.47 g, meanwhile in case of nonlinear analysis it ranges from 0.17 to 0.46 g. It is verified from both analyses that the PGA map provided by the USGS for the southern part of Kathmandu valley is not properly representative, in contrary of the northern part. Similarly, the peak spectral amplification in case of equivalent linear analysis is estimated to be varying between 2.3 to 3.8, however in case of nonlinear analysis, the variation is observed in between 8.9 to 18.2. Both the equivalent linear and nonlinear analysis have depicted the soil fundamental period as 0.4 and 0.5 sec for the studied locations and subsequent analysis for seismic demands are correlated.