• Title/Summary/Keyword: PFC(Power-Factor-Correction)

Search Result 315, Processing Time 0.038 seconds

Module Type Parallel Driving Algorithm for High Voltage Direct-Current source (고전압 소스를 위한 모듈식 병렬운전 알고리즘)

  • Woo, Byung-Guk;Lee, Yong-Hwa;Kang, Chan-Ho;Cho, Kwan-Yuhl
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.24-27
    • /
    • 2008
  • For high voltage DC-DC converters, the parallel operation of several high voltage source modules is necessary to reduce the material cost. In the conventional parallel operation with HDC module control unit, it is difficult to repair the HDC system for the failure of control unit. To overcome these problems, new parallel operating algorithm for high voltage DC-DC converter is presented. The proposed algorithm has no main control unit and each module can be selected as the master according to the operating conditions. Therefore, one of modules can be replaced as the master immediately when the previous master module is failed. In addition, the extension of extra modules can be simple.

  • PDF

Research and Design of Inverter for Controlling A Large Size Plasma Sign Board (대면적 플라즈마 사인 보드의 제어를 위한 인버터 설계 및 연구)

  • Lee, Jae-Deog;Park, Sung-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.41-42
    • /
    • 2010
  • 본 논문에서는 대면적 플라즈마 사인 보드 제어를 위한 저소비 전력용 인버터를 개발하였다. 이 인버터는 215*86mm 사이즈로 인가전압 220V, 출력전압 1200V, 스위칭 주파수 20KHz, 소비전력 50W 급인 인버터를 역률개선회로 PFC(Power Factor Correction)를 적용하여 리플을 줄이고 안정적인 전압 공급, 전체 전류 정격감소, 회생전압 상승분 억제, 유니버설 입력범위에서 동작 가능하게 만들었다. 고전압트랜스를 4개를 집적화 하였으며 전력 소비 전류가 감소되면서 온도가 상승되는 것을 막을 수 있었고 전자파도 줄일 수 있음을 보였다.

  • PDF

Single-stage Battery charger design using A Series resonant converter (직렬 공진 컨버터를 이용한 Single-stage 배터리 충전기 설계)

  • Gwon, Sun Man;Yoo, Kwang Min;Lee, Byung Kwon;Kim, Seoung Joo;Choi, Seung Won;Bae, Jung Hwan;Lee, Jun Young
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.305-306
    • /
    • 2013
  • 이 논문은 Single-stage로 구현한 전기 오토바이용 배터리 완속 충전기를 제안한다. 전기 오토바이용 배터리 완속 충전기는 상용전원을 입력으로 사용하므로 $110V_{ac}$$220V_{ac}$에서 사용이 가능하며 역률 보정이 고려되어야 한다. 일반적으로 역률 개선(Power Factor Correction : PFC)를 담당하는 AC/DC 컨버터와 DC/DC단의 2단 구성의 충전기 구조가 일반적이나, 이를 기존 이단구조의 복잡한 시스템을 단일 전력단으로 설계하였다. 본 논문에서는 전기 오토바이용 2KW급 SRC single-stage 공진형 컨버터를 설계하고 실험 검증하였다.

  • PDF

Development of simulation on parallel operation of the On-Board Charger (차량용 OBC 병렬운전 시뮬레이션 개발)

  • Zhu, Helin;Mok, HyungSoo;Choi, Sungho;Park, SungUk;Sung, KiHak
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.225-226
    • /
    • 2018
  • 전기자동차 배터리팩을 충전하기 위한 장치인 차량용 OBC(On-Board Charger)는 AC/DC 컨버터 기능을 담당하는 PFC(Power Factor Correction)와 DC/DC 전력변환 및 전기적 절연을 담당하는 Phase-Shifted Full Bridge Converter를 포함 한다. 현재 시중에 3.3kW급 OBC를 기준으로 규격화되어 생산되고 있지만 전기자동차의 배터리 용량이 날로 증가하고 전기자동차 보급, 사용률이 증가함에 따라 완속충전에 대한 요구가 높아지고 있다. 여기에 전력 인프라 시설 개선과 더불어 6.6kW급 완속충전이 보편화될 수 있게 된다. 차량용 OBC 공급업체에 있어서는 기존의 3.3kW급과 6.6kW급 OBC의 개발 중 어느 쪽에 중심을 둘지 고민에 대한 대안으로 기존의 3.3kW급을 모듈화하여 병렬운전하는 방법으로 6.6kW급 OBC 시장수요에 대응 할 수 있다. 본 논문에서는 3.3kW급 OBC 및 2병렬운전에 관한 시뮬레이션을 개발하고 분석하였다.

  • PDF

A Study on Heat Transfer Coefficient of a Perfluorocarbon Heat Pipe (Perfluorocarbon 히트파이프의 열전달 계수에 관한 연구)

  • 강환국;김철주;김재진
    • Journal of Energy Engineering
    • /
    • v.7 no.2
    • /
    • pp.194-201
    • /
    • 1998
  • In electric commuter trains using AC motors, lots of GTO thyristors and diodes are needed for power controls. These semiconductors generate heat about 1~2 kW, and for cooling which perfluorocarbon(PFC) heat pipes have been in use for the last two decades. The present study was investigated on the effects of such important design parameters as structure of internal surface (grooved or smooth), fill charge ratio, and inclinating angle from a vertical on heat transfer coefficients at both evaporators and condensers. To obtain experimental data, several heat pipes of the same geometry of 520 mm long and diameter of 15.88 mm but different in fill charge ratio and internal surface structure were designed and fabricated. For prediction of the heat transfer coefficients, related expressions were examined and the results of calculations were compared with experimental data. Performance tests were conducted while heat pipes operated at mode of thermosyphons. High enhancements of heat transfer coefficient were obtained internal grooves. In these cases, the evaporating heat transfer coefficients distributed in the range of 2~5.5 kW/$m^2$K, with an increase of heat flux from 15~45 kW/$m^2$. These experimental data were in good agreement with Rohsenow's expression based on nucleate boiling when correction factor $C_R$=1.3 was encountered. In addition, the condensation heat transfer coefficients were distributed from 1.5 to 3.5 kW/$m^2$K, and the data were in good agreements with Nusselt's correlation, based on filmwise condensation on vertical plate, when choosing a correction factor $C_N=4$. A fill charge ratio of 40~100% were recommended, and the in clination angle effects were negligible when the angle was higher then 30$^{\circ}$.

  • PDF

Single-stage Power Factor Corrected AC-to-DC Converter for sustain/reset Driving Power Supply of PDP TV (PDP TV의 sustain/reset 구동전원 공급을 위한 1단방식의 역률보상형 AC-to-DC 컨버터)

  • Kang, Feel-Soon;Park, Jin-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.282-289
    • /
    • 2008
  • To improve the efficiency of PDP TV, it should minimize the power losses transpired during AC-to-DC power conversion and PDP driving process. Generally the input power supply for PDP driving employes a two-stage power factor corrected converter, and it needs additional DC-to-DC converters to supply driving power for reset circuit ed sustain driver, which has high power consumption. However, such a circuit configuration has a difficulty for the PDP market requires low cost. To alleviate this problem, a new circuit composition is presented. It integrates input power supply with reset and sustain driver in a single power stack The input power supply of the proposed circuit has a single-stage structure to minimize power conversion loss, and it directly supplies power to the sustain driver so as to reduce the system size and cost.

A Single-Stage AC/DC Converter with Low Voltage Stresses and Reduced Switching Losses

  • Kim, Kyu-Tae;Choi, Woo-Young;Kwon, Jung-Min;Kwon, Bong-Hwan
    • Journal of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.823-834
    • /
    • 2009
  • This paper proposes a high-efficiency single-stage ac/dc converter. The proposed converter features low voltage stresses and reduced switching losses. It operates at the boundary of discontinuous- and continuous-conduction modes by employing variable switching frequency control. The turn-on switching loss of the switch can be reduced by turning it on when the voltage across it is at a minimum. The voltage across the bulk capacitor is independent of the output loads and maintained within the practical range for the universal line input, so the problem of high voltage stress across the bulk capacitor is alleviated. Moreover, the voltage stress of the output diodes is clamped to the output voltage, and the output diodes are turned off at zero-current. Thus, the reverse-recovery related losses of the output diodes are eliminated. The operational principles and circuit analysis are presented. A prototype circuit was built and tested for a 150 W (50V/3A) output power. The experimental results verify the performance of the proposed converter.

Improvement of LCC-HVDC Input-Output Characteristics using a VSC-MMC Structure

  • Kim, Soo-Yeon;Park, Seong-Mi;Park, Sung-Jun;Kim, Chun-Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_1
    • /
    • pp.377-385
    • /
    • 2021
  • High voltage direct current(HVDC) systems has been an alternative method of a power transmission to replace high voltage alternate current(HVAC), which is a traditional AC transmission method. Due to technical limitations, Line commutate converter HVDC(LCC-HVDC) was mainly used. However, result from many structural problems of LCC-HVDC, the voltage source converter HVDC(VSC-HVDC) are studied and applied recently. In this paper, after analyzing the reactive power and output voltage ripple, which are the main problems of LCC-HVDC, the characteristics of each HVDC are summarized. Based on this result, a new LCC-HVDC structure is proposed by combining LCC-HVDC with the MMC structure, which is a representative VSC-HVDC topology. The proposed structure generates lower reactive power than the conventional method, and greatly reduces the 12th harmonic, a major component of output voltage ripple. In addition, it can be easily applied to the already installed LCC-HVDC. When the proposed method is applied, the control of the reactive power compensator becomes unnecessary, and there is an advantage that the cut-off frequency of the output DC filter can be designed smaller. The validity of the proposed LCC-HVDC is verified through simulation and experiments.

Development of an Electronic Ballast for 70W Ceramic Discharge Metal Halide Lamps with Step Down Converter (강압형 컨버터를 이용한 70W CDM 램프용 전자식 안정 기의 개발)

  • 김일권;길경석;김진모
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.7
    • /
    • pp.1055-1061
    • /
    • 2002
  • This paper deals with a design and fabrication of an electronic ballast for 70[W] ceramic discharge metal halide lamps. The proposed ballast is composed of a rectifier, an active power factor correction circuit (PFC), a half-bridge inverter, a LC resonant circuit and a microprocessor. The developed ballast also includes a specially designed time circuit which provides reignition signal of lamps. Running frequency of the ballast is .jet at 40[kHz] to avoid acoustic-resonance and flickering. From the experimental results, input power factor and efficiency of the ballast are estimated 99.8[%] and 93.1[%], respectively.