• Title/Summary/Keyword: PET fabric

Search Result 238, Processing Time 0.031 seconds

Study on the TiO2-Ag Nanoparticle Coated PET Fabric with an Atomizer (아토마이저를 이용한 PET 직물의 TiO2-Ag 나노입자 코팅 연구)

  • Lee, Hyun Woo;Hong, Tae Min;Son, Han-Geul;Lim, Sung Chan;Shin, Weon Gyu;Lee, Seung Goo
    • Textile Coloration and Finishing
    • /
    • v.26 no.2
    • /
    • pp.99-105
    • /
    • 2014
  • In this study, $TiO_2$ and Ag powders were deposited on the PET fabric using an atomizer in order to study the characteristics of particle deposited fabric. To improve the particle deposition, the surface of the fabric was pre-treated with an electron beam and its effect was studied with the deposition of those elements on the fabric. The SEM was used to observe the morphology of the deposition fabric and through the EDS analysis, the deposition of $TiO_2$ and Ag was confirmed. Also, the absorbance of the particle deposited fabric was measured using the Methylene Blue to verify the photolysis nature of $TiO_2$. Moreover, the antibiotic nature of Ag on the surface of the PET fabric was identified through the antibiosis test.

A Study on Downproof fabric development using low denier PET (PET 세섬도 Downproof 직물개발에 관한 연구)

  • Sim, Seung-Beom;Yun, Won-Bo;Choe, Gwang-Seok
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2008.10a
    • /
    • pp.145-146
    • /
    • 2008
  • This is studies about light and thin PET fabric having downproof properties using low denier filament yarn. We study how the manufacturing fabric effect on downproof properties according to conditions of low denier yarn, fabricataion, and dyeing and finishing.

  • PDF

Electromagnetic Wave Shielding Effectiveness of Electroless Chemical Copper and Nickel Plating PET fabrics (구리와 니켈 금속이 무전해 도금된 폴리에스테르 섬유의 구조에 따른 전자파 차폐성)

  • Chun, Tae-Il;Park, Jung-Hwan
    • Fashion & Textile Research Journal
    • /
    • v.10 no.3
    • /
    • pp.385-388
    • /
    • 2008
  • Four kinds of PET fabrics were coated with Copper and Nickel by electroless chemical plating, and the electromagnetic wave shielding effectiveness for those samples have been examined. The shielding effectiveness showed between 90 dB and 70 dB, and it related to the fabric structure, such as cover factor and cloth density. The dense fabric structure showed the better shielding effect.

Far-infrared Emission Characteristics of ZrC Imbedded Heat Storage Knitted Fabrics for Emotional Garment (탄화지르코늄 함유 감성의류용 축열/발열 편물의 원적외선 방출특성)

  • Kim, Hyun-Ah
    • Science of Emotion and Sensibility
    • /
    • v.18 no.1
    • /
    • pp.49-58
    • /
    • 2015
  • This paper investigated far-infrared emission characteristics of ZrC imbedded heat storage knitted fabrics for emotional garment. For this purpose, ZrC imbedded heat storage PET was spun with high viscosity PET imbedded ZrC powder on the core part and low viscosity PET on the sheath part by conjugated spinning method. Ingredient analysis and far-infrared emission characteristics assessment of spun filament were carried out by EDS and FT-IR spectrometer. Two kinds of knitted fabrics were made using texturized ZrC imbedded PET for measuring thermal characteristics of ZrC imbedded heat storage PET. Zr peak was certified by EDS measurement and it was confirmed that content of Zr was 19.29%. Far-infrared analysis revealed that emission power at the range of wavelength, $5{\sim}20{\mu}m$ was $3.65{\times}10^2W/m^2$, and emissivity was 0.906. Heat storage analysis by KES-F7 system revealed that $Q_{max}$ of ZrC imbedded PET knitted fabric was lower than that of regular PET one and warmth keepability rate was higher than that of regular one, which means that ZrC imbedded PET knitted fabric has heat storage property. Thermal conductivity of ZrC imbedded PET knitted fabric was higher than that of regular PET one which was caused by high thermal conductivity of Zr itself. Hand property of ZrC imbedded knitted fabric was not inferior compared to regular PET knitted fabric, which preferably was found to be dependent on knit structure and surface property.

PET Fabric/Poly(3,4-ethylenedioxythiophene) Composite as Polymer Electrode in Redox Supercapacitor

  • Cho, Seung-Hyun;Joo, Jin-Soo;Jung, Bo-Ram;Ha, Tae-Min;Lee, Jun-Young
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.746-749
    • /
    • 2009
  • Poly(ethylene terephthalate) (PET) fabric/poly(3,4-ethylenedioxythiophene) (PEDOT) composite with stable and high electrochemical activity was fabricated by chemical and electrochemical polymerization of 3,4-ethylenedioxythiophene (EDOT) on a PET fabric in sequence. Effects of polymerization conditions on the following characteristics of the composite were studied: electrical conductivity and surface morphology. The electrochemical properties were also investigated by cyclic voltammetry and cyclic charge/discharge experiments. The specific volume resistivity, electrical conductivity and specific discharge capacitance of the composite were 0.034 $\Omega-cm$ and 25 S/cm, and 54.5 F/g, respectively.

PET Fabric Supported Fixed Site Carrier Membrane for Selective Metal ion Transport

  • Jin, Long Yi;Mah, Soukil
    • Fibers and Polymers
    • /
    • v.3 no.1
    • /
    • pp.14-17
    • /
    • 2002
  • Development of a novel fixed site carrier membrane (FCM), supported by PET fabric for metal ion separation is reported. The membranes were prepared by dipping PET fabric into the methylene chloride solution of Poly(5-vinyl-m-phe-nylene-m'-phenylene-32-crown-10) (P(VCE)), a polymeric metal ion carrier. It was found that the flux of mono-valent metal ion transported across the membrane is signif=cantly differed from each other and the flux decreases in the order $Cs^+$>$Rb^+$>$K^+$>$Na^+$>$Li^+$ irrespective to the anion except perchlorate anion. It was explained in terms of the stability of the complex, formed by crown ether unit of the P(VCE) and the various metal ions, meanwhile, the lower rate of transport in the presence of perchlorate anion was ascribed to its low hydrophilicity.

Waterborne PU Impregnation and Color Fastness of Ultramicrofiber PET Knitted Fabric (폴리에스테르 초극세 편직물의 수분산 PU 함침가공 및 염색견뢰도)

  • 정동석;천태일;이문철
    • Textile Coloration and Finishing
    • /
    • v.15 no.3
    • /
    • pp.168-175
    • /
    • 2003
  • Ultramicrofiber(UMF) PET knitted fabric and regular PET plain woven fabric as reference sample were impregnated with waterborne polyurethane(PU) in a two-step process with dyeing/PU treatment and PU treatment/dyeing to investigate the effect of the treatment sequence. The waterborne PU impregnated fabrics were dyed with two kinds of vat and disperse dyes to investigate the dyeing properties and the dyeing fastnesses. In vat dyeing the rank of color strength(K/S) was in order of dyeing/PU impregnation > dyeing only > PU impregnation/dyeing, whereas in case of disperse dyeing, the order was dyeing/PU impregnation > PU impregnation/dyeing >dyeing only. Wash fastness of vat dyeing showed a higher 2-3 grade than disperse dyeing, while rubbing and light fastnesses were not good for disperse dyes.

Formability of Thermoplastic Laminar Composite depending on the Types of- Fabric (Fabric 형태에 따른 열가소성수지 적층복합재료의 성형성)

  • Shin, Ick-Jae;Lee, Dong-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1338-1346
    • /
    • 2003
  • Three-dimensional formability of the thermoplastic laminar composite was studied according to manufacturing conditions. Five different types of the plain weave fabric were used as reinforcement with PET matrix. The square blank was made by press consolidation technique and formed in the type hemisphere. B-factor defined as the ratio of width of yarn and distance between yarns was used as the factor of formability in the type of plain weave fabric. The formability of PET/Glass fabric laminar composite was estimated in terms of forming rate and B-factor with the thickness distribution, area ratio of blank, and intra-ply shear angle. The thickness distribution across hemisphere was strongly affected by the B-factor, forming rate and blank thickness. The area ratio of blank was increased with B-factor, forming rate and blank thickness. Also, it was found that the intra-ply shear angle depends on the B-factor and forming rate.

Antimicrobial and Water Repellency Effect of Functional PET Fibers with ODDMAC(octadecyldimethyl(3-triethoxy silylpropyl) ammonium chloride) (ODDMAC를 이용한 항균성 및 발수성 동시 발현이 가능한 기능성 PET 섬유)

  • Yang, Heejin;Jeon, Hyeji;Lee, Sang Oh;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.32 no.4
    • /
    • pp.265-273
    • /
    • 2020
  • In this study, octadecyldimethyl(3-triethoxy silylpropyl)ammonium chloride (ODDMAC) incorporated with Polyethylene terephthalate (PET) fabrics with different environmental conditions such as various temperature and time intervals. First, ODDMAC (15 weight %) was dissolved in ethanol. Then PET fabrics immersed in the ODDMAC solution at 25 ℃ for 10 minutes and dried at 80 ℃ for 5 minutes. The dried PET/PDDMAC fabrics carried out for curing process out at 110 ℃ ~ 190 ℃. The treated PET/ODDMAC has examined the surface and side coating properties through SEM analysis and elemental analysis. PET/ODDMAC fabric washed with water up to 50 times and studied the durability of the materials. It was confirmed that the treated PET fabric also exhibited good water repellency. In addition, the antimicrobial activity against the gram-positive bacteria Staphylococcus aureus and gram-negative bacteria Escherichia coli were studied by the disc diffusion method on the treated fabric.

The Bathochromic Effect of Polyester Fabric Treated with Low Refractive Compounds (저굴절률 화합물 처리에 의한 PET직물의 심색화)

  • 박민식;장철민;서말용;김삼수;유승춘
    • Textile Coloration and Finishing
    • /
    • v.10 no.5
    • /
    • pp.48-55
    • /
    • 1998
  • Polyester fabric is widely used in textile material though it has some problems such as low colour value, high refractive ratio(1.62) and etc. In order to give Z-black colour of polyester fabric, this study has selected several disperse dyes by measuring of absorbance, dyed in their optimum conditions and treated with 4 kinds of low refractive compounds such as silicone, fluorine, urethane and silicone-fluorine mixed compounds. The bathochromic effect of treated PET fabric evaluated as lightness(L) change by uv-visible spectrophotometer. This study also investigated that the effect of used bathochromic agents on the washing and lightfastness of treated PET fabric.

  • PDF