• Title/Summary/Keyword: PET Dyeing

Search Result 191, Processing Time 0.028 seconds

Combination Dyeing of Triacetate/PET Blended Fabric with Disperse Dye (트리아세테이트/PET 혼방 직물의 분산염료 혼합염색)

  • Kim, Myoung Ok;Lee, Jung-Soon
    • Science of Emotion and Sensibility
    • /
    • v.19 no.4
    • /
    • pp.3-12
    • /
    • 2016
  • The aim of this study is to find the optimal combination dyeing condition for the enhancement of dye uptake and union dyeing of the composite material fabric made of triacetate and quick drying PET blended yarn. For the experiment, fabrics were one-bath combination dyed using the mixed dye of E-type disperse dye(C.I Disperse red 50) and S-type disperse dye(C.I. Disperse red 92) to measure dyed fabric's dye exhaustion, dye uptake, color and color difference according to the diverse conditions including dying temperature, time and mixed ratio of the dye. Dye equilibrium of combination dyeing occurred in $100^{\circ}C$, but by comparing dyed fabrics' K/S value and surface color, it was found that $120^{\circ}C$ was where the manifestation of color of triacetate and quick drying PET was identical. Mixed dye exhaustion and dye uptake merely changed as dyeing time increased, but color became more uniform. Therefore, it can be concluded that by using combination dyeing method, and by using the mixed dye which the mixing ratio of S-type dye and E-type dye is appropriately controlled, dye uptake can be improved compared to using single dyeing regardless of the color of E-type dye.

Dyeing properties of direct spun type microfiber (직방형 이형단면 초극세사의 염색성 및 견뢰도 평가)

  • Eom, Min-Yeong;Kim, Dong-Bin;Go, Jun-Seok
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2008.04a
    • /
    • pp.83-85
    • /
    • 2008
  • Dyeing and fastness properties of direct spun type PET microfiber have been compared with those of regular PET fiber and PET-Nylon conjugated microfiber. The dye uptake of finer microfibers commenced at lower temperatures and showed faster rate of dye uptake. The build-up and wash fastness properties of disperse dyes on direct spun type PET microfiber were relatively better than split type PET-Nylon microfiber.

  • PDF

The Physical Property of PET Coolness Knitted Fabric for High Emotional Garment (고감성 의류용 PET 냉감 니트 소재의 물성)

  • Kim, Hyun Ah;Woo, Ji Yoon;Kim, Seung Jin
    • Textile Coloration and Finishing
    • /
    • v.26 no.2
    • /
    • pp.114-123
    • /
    • 2014
  • This research investigated the physical properties of PET coolness filaments and their knitted fabrics including dyeing characteristics of these knitted fabrics according to the different dyeing time and temperature. The coolness filament(S) with non-circular cross-section and hydrophilic property was spun and another commercialized coolness(A) and regular(R) PET filaments were prepared for comparing coolness and another physical properties. Qmax of coolness knitted fabric made with S filament was higher than that of R-PET filament, and the maximum value of Qmax of S knitted fabric was shown at the dyeing conditions of temperature, $110^{\circ}C$ with 30 min. or 40min. It was shown that hand of S knitted fabric was a little harsh comparing to A and regular knit specimens, but shape retention and wearing performance of garment made with S knit specimen were estimated as good owing to high bending and shear rigidity. K/S of S knitted fabric was higher than those of regular PET and A knit specimens. Dyeing fastness of coolness knitted fabric showed between 4th and 5th grade.

The Analysis of the Micro-structure of Oxygen Plasma Treated PET Using a Nitrogen Porosimeter (Nitrogen Porosimeter를 이용한 산소 플라즈마 처리 PET의 미세구조 분석)

  • 김병인;김태경;조규민;임용진
    • Textile Coloration and Finishing
    • /
    • v.11 no.6
    • /
    • pp.1-6
    • /
    • 1999
  • The porosities of PET fibers were investigated using a nitrogen porosimeter according to oxygen plasma treatment and dyeing with a disperse dye, and they were discussed in terms of the change of internal micro-structure of the PET fiber. The total pore volume, surface area and average pore size of the plasma treated PET fibers increased expectably compared with the untreated sample. The PET fibers treated with oxygen plasma and then dyed with a disperse dye were increased significantly in the surface area and the total pore volume comparing with those of plasma treated only, but decreased in the average pore size. The increase of the surface area, after dyeing, of the plasma treated PET fibers was due to addition of the surface area of the dye itself to that of the PET fiber. The increase of the total pore volume of the plasma treated PET fibers by dyeing, which is the opposite result to the general idea that the pore volume of fibers would be reduced by occupation of dye molecules in the pores, could be explained by the free-volume model. This is that the amorphous region in the fiber expanded by occupation of dye molecules, and the marginal space surrounding dyes was generated as many smaller pores, and the decrease of the average pore size of the dyed sample also could be explained The decrease of the average pore size was caused by the splitting of a larger pore into smaller pores.

  • PDF

Cochineal natural dyeing of alkali-treated PET (II) - Color, Washfastness, Abrasion Resistance, Static Electricity Characteristics - (알칼리 감량(減量) PET의 코치닐 염색(染色) (II) - 색상(色相), 세탁견뢰도(洗濯堅牢度), 마찰견뢰도(摩擦堅牢度), 마찰대전압(摩擦帶電壓)을 중심(中心)으로 -)

  • Kim, Hyun-Su;Jeon, Dong-Won
    • Journal of Fashion Business
    • /
    • v.9 no.5
    • /
    • pp.122-135
    • /
    • 2005
  • It has been reported that natural dyeing is impossible without pre-treatment with metal mordanting agents. However, pre-treatment with chitosan, which has high affinity to natural dyes, could result in an excellent dyeing with various natural dyes. In this study, three treatment methods were employed; 1) Using PET without any pre-treatment (Method 1) 2) Using PET with chitosan acid solution pre-treatment (Method 2) 3) Using PET with chitosan pre-treatment and subsequent crosslinking using citric acid (Method 3) Method 2 and 3 enhanced the Cochineal dyeability remarkably compared to Mehod 1. Washfastness was also enhanced, and moisture content, static property, abrasion resistance, and fabric hand changes were investigated.

Dyeing Properties of PET/Dyeable PP Double Knit Fabric (PET/가염PP 이종 편성물의 염색 특성)

  • Chang, Young-Min;Lee, Jin-Ah;Park, Jong-Ho;Koh, Joon-Seok;Jung, Young-Jin;Kim, Sung-Dong
    • Textile Coloration and Finishing
    • /
    • v.20 no.2
    • /
    • pp.53-58
    • /
    • 2008
  • New dyeable PP fiber and several products from it has been developed through dispersing polyester copolymer into PP resin by a Korean synthetic fiber manufacturer and its colleagues. The dyeing properties of PET/dyeable PP double knit fabric were examined with three different types of disperse dye in this study. It was found that the disperse dye, exhausted on dyeable PP at early stage of dyeing, migrated to PET at elevated dyeing temperature when two fibers were dyed in the same dye bath. The ratios of dye distribution between two substrates dyed at $120^{\circ}C$ and $130^{\circ}C$ showed no difference. S type disperse dyes showed good build-up properties and acceptable color fastness while high light fastness type exhibited the lowest amounts of exhaustion but excellent color fastness. It might be concluded that the most appropriate dye for PET/dyeable PP double knit fabric was S type, and that some color difference between PET side and dyeable PP side was unvoidable.

Dyeing of PTT Fiber(1) - Effect of Heat Setting on Dyeing and Physical Properties of PTT Fiber - (PTT 섬유의 염색성 (1) - 열처리한 PTT 섬유의 염색성 및 물성 -)

  • 이두환;정동석;이문철
    • Textile Coloration and Finishing
    • /
    • v.14 no.5
    • /
    • pp.268-276
    • /
    • 2002
  • Poly(trimethylene terephthalate)(PTT) and Poly(ethylene terephthalate)(PET) fibers were annealed at various temperatures ranging from $100^\circ{C}$ to $230^\circ{C}$ for 10 min under tension and tension free. Dyeing rates and absorption isotherms of both fibers were obtained with C.I. Disperse Red 60 at 100, 120 and $130^\circ{C}$ in water system. Also X-ray diffraction pattern, moisture regain and water absorption were investigated. The dyeing rate of PTT fiber is faster than PET fiber, and dyeing of PTT fiber begin at lower temperature compared to PET fiber. The absorption isotherms from both fibers with disperse dye we nearly linear up to the saturation dye uptake, which increase with dyeing temperature. Equilibrium dye uptake of PTT fiber annealed under tension above $180^\circ{C}$ was remarkably decreased because of a changes in the fine structure of fiber. The intensities of X-ray diffraction peaks of both annealed fibers were increased with increasing in annealed temperature. The reflections observed at $2\theta$=$15.8^\circ$, $24^\circ$ and $25.2^\circ$ were assigned reflection of crystal at the planes of (010), $(1\bar02,\;\bar112),\;and\;(\bar13,\; \bar113)$ respectively, and the peak became sharp with heat setting temperature.

Effect of Chitosan and Mordant Treatments on the Air-permeability and Fastness of Silk and PET fabrics Dyed using Rhusjara ica (견(絹)과 PET 직물(織物)의 오배자(五倍子) 염색(染色) 시(時) chitosan 처리(處理)와 매염(媒染)이 공기투과도(空氣透過度) 및 견뢰도(堅牢度)에 미치는 영향(影響))

  • Hong, Shin-Jee;Jeon, Dong-Won;Kim, Jong-Jun;Jeon, Jee-Hae
    • Journal of Fashion Business
    • /
    • v.9 no.1
    • /
    • pp.113-119
    • /
    • 2005
  • In our previous study, the color development characteristics in the dyeing of silk fibers and PET fibers using Rhusjara ica and related properties were meticulously reviewed. At the same time, the fabric specimens were endowed with chitosan treatment prior to the dyeing procedure in order to investigate the effect of chitosan on the dyeing behavior. The analysis of the colors only, however, would not give us complete elucidation of the effect of fiber characteristics and the mordanting characteristics. In this study, the effect of chitosan and metal mordant treatment in dyeing of silk and PET fabrics using Rhusjara ica has been studied. The change of air-permeability, wash fastness, and light fastness were also investigated.