• Title/Summary/Keyword: PET 기지 복합재료

Search Result 4, Processing Time 0.019 seconds

Organically Modified Vermiculite-Poly(Ethylene Terephthalate) Nanocomposites (유기물로 개질한 나노점토-폴리(에틸렌 테레프탈레이트) 복합재료의 기계적 특성)

  • Hai Anh Thi Le;Yong Tae Park
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.275-280
    • /
    • 2023
  • Because polymer-based composites are lightweight and have excellent properties, their demand is growing rapidly as a way to fulfill properties that are difficult to achieve with a single material. As a result, there has been a lot of research on polymer nanocomposites, which are made by dispersing particles with a size of 1-100 nm in a polymer matrix. In addition, many nanocomposites using thermoplastic resins as matrix materials are being studied. In this study, poly(ethylene terephthalate) (PET)-based nanocomposites containing organic nanoclays modified with cetyltrimethylammonium bromide (CTAB) as interlayer materials were prepared. Among various nanoclays, vermiculite (VMT) has been studied to increase the mechanical and thermal properties of polymeric materials due to its low cost, abundant reserves and unique properties. However, the strong interlayer bonding of VMT has limited its utilization due to its poor exfoliation and dispersion performance within polymer matrices. In this study, the mechanical properties of the VMT content were confirmed by tensile tests, the dispersion of VMT particles in the PET matrix was evaluated by TEM cross-sectional images, and the nitrogen gas barrier properties were evaluated.

Comparison of Mechanical and Interfacial Properties of Carbon Fiber Reinforced Recycled PET Composites with Thermoforming Temperature and Time (열 성형 온도 및 시간에 따른 탄소섬유 강화 재활용 PET 복합재료의 계면 및 기계적 물성 비교)

  • Baek, Yeong-Min;Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Ha-Seung;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.175-180
    • /
    • 2017
  • Currently, since carbon fiber reinforced plastics (CFRPs) are lightweight and have excellent physical properties, their demand has increased dramatically. Many works have studied the CFRPs based on recycled thermoplastics. In this study, the applicability of recycled composite was evaluated using recycled polyethylene terephthalate (PET). PET was collected from waste materials used in beverage bottles and processed to produce PET films. Optimal thermoforming temperature and time were analyzed by comparing the mechanical properties with forming temperature and time difference for producing PET films. CF mat and PET film were used to determine the suitable parameters for the optimum thermoforming of CF/PET composites. The mechanical properties of each thermoforming condition were verified by bending test. The degree of impregnation of the PET film into the CF mat was evaluated by cross-sectional photographs, whereas the interfacial properties were evaluated by interlaminar shear strength (ILSS). Ultimately, it was confirmed that the thermoforming condition for forming the CF/recycled PET composites yielding the optimal mechanical and interfacial properties was at $270^{\circ}C$ for 5 minutes.

Optimal Manufacturing Conditions of Glass Fiber Reinforced PET Matrix Composites by Rapid Press Consolidation Technique (고속압밀법에 의해 제작된 유리섬유강화 PET 기지 복합재료의 최적제작조건)

  • Lee, Dong-Ju;Sin, Ik-Jae;Kim, Hong-Geon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.813-821
    • /
    • 2002
  • Glass fiber reinforced PET matrix composite was manufactured by rapid press consolidation technique as functions of temperature, pressure and time in pre-heating, consolidation and solidification stages. The optimal manufacturing conditions for this composite were discussed based on the void content, tensile, interlaminar shear and impact properties. In addition, the levels of crystallinity with various manufacturing conditions were measured using differential scanning calorimetry to investigate the mechanical properties of this composite material as a function of crystallinity. Among many processing parameters, the mold temperature and the cooling rate after forming were found to be the most critical factors in determining the level of crystallinity and mechanical properties. The level of crystallinity affects the tensile properties to some degree. However, impact properties are affected much more. It also affects the degree of ductility, which determines the impact energy of this material.

Crystallinity and Mechanical Properties of Glass Fiber Reinforced Thermoplastic Composites by Rapid Press Consolidation Technique (Consolidation 방법에 의해 제작된 유리섬유강화 복합재료의 결정성과 기계적성질에 관한 연구)

  • Shin, Ick-Jae;Kim, Dong-Young;Lee, Dong-Joo
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.91-96
    • /
    • 2000
  • Glass fiber reinforced thermoplastic composites were manufactured by Rapid Press Consolidation Technique(RPCT) as functions of temperature, pressure and time in pre-heating, consolidation and solidification sections during the manufacturing processing. It was found that the material property is greatly affected by pre-heating temperature under vacuum, mold temperature and molding pressure. Among them, the temperature In the mold was the most critical factor in determining the mechanical properties and the molded conditions of specimen. The crystallinity of PET matrix was also investigated by differential scanning calorimetry(DSC) measurements for various processing conditions. The level of crystallinity($X_c$) depended strongly on the mold temperature, cooling rate and the type of composite. The difference in $X_c$ is believed to be one of important factors in characterizing the mechanical properties.

  • PDF