• Title/Summary/Keyword: PET/cotton

Search Result 53, Processing Time 0.024 seconds

Bedding Fabric Performance Using Polyester, Tencel and Cotton MVS Blended Spun Yarns (PET, Tencel, Cotton MVS 혼방사로 제직된 침구용 직물의 성능평가)

  • Sa, A-Na;Lee, Jung Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.1
    • /
    • pp.17-27
    • /
    • 2017
  • This study evaluated the performance of bedding fabrics consisting of warp (150d/144f, polyester) and weft (polyester, Tencel and cotton MVS blended spun yarn) with blend ratio of weft. We measured electrostatic propensity, moisture properties, pilling properties and mechanical properties of the fabrics for this study. F-P fabric showed outstanding moisture properties and pilling properties. However, tensile properties and electrostatic propensity were relatively inferior to other characteristic values. Significant static electricity may make F-P fabric uncomfortable. F-P7C3 fabric showed outstanding moisture properties and pilling properties. Static electricity may make F-P7C3 fabric uncomfortable; in addition, F-P5C5 fabric showed outstanding moisture properties and pilling properties. Rough and stiff hand feel were expected to increase because tensile properties decreased and surface properties increased. F-C fabric showed outstanding pilling properties and electrostatic propensity. However, it showed inferior moisture control properties. F-P5T4C1 fabric showed outstanding moisture properties, pilling properties and electrostatic propensity. Several properties are outstanding; however, the hand feels are very rough and stiff from bending. The water evaporation and static electricity increased with increasing polyester content. As the content of cotton increased, tensile properties were improved. However, water evaporation and static electricity decreased. The addition of Tencel increased the thickness and compression energy so that it exhibited a soft characteristic upon compression and an excellent moisture control properties, but the surface became somewhat coarse.

Effect of Hydrophilic and Hydrophobic Finishes of Fabrics on the Stratum Corneum Water Content and Comfort Properties (직물의 친수 및 소수화 처리가 피부잔류수분량 및 쾌적감에 미치는 영향)

  • Kahng, Soo Ma;Kim, Eun Ae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.17 no.1
    • /
    • pp.151-161
    • /
    • 1993
  • The purpose of this study was to investigate the effect of hydrophilic finish for polyester (PET) fabric and hydrophobic finish for cotton fabric on the water transport and comfort properties. Polyester fabric was treated with 10% sodium hydroxide solution to impart hydrophilicity. Cotton fabric was sprayed with Scotch-gard$^{(R)}$ water and oil repellent finish to impart hydrophobicity. Porosity, air permeability, contact angle, wickability and water vapor transport rate (WVTR) were measured to determine the water transport properties of fabrics. To compare the comfort properties of treated and untreated fabrics, wear test was performed by putting fabric patches on the upper back: stratum corneum water content (SCWC), subjective wettedness and comfort rating were determined. The results were as follows: (1) The contact angle of water on treated polyester fabric was decreased and that of treated cotton fabric was increased. Also, the wickability of treated polyester fabric was increased and the wickability of cotton fabric was decreased. (2) Although each finish did not change porosity, the water vapor transport rate of treated polyester fabric was increased and that of treated cotton fabric was decreased slightly. (3) The results of stratum corneum water content measurements showed good agreement with the results of the contact angle and the wickability, i.e., the better the liquid water transport properties are, the less the stratum corneum water contents were resulted. (4) The realtionship of subjective wettedness or comfort and stratum corneum water content was independent. Therefore, it was concluded that human perception on the subjective wettedness or the comfort is affected by the skin contact of wet fabric rather than by the stratum corneum water content.

  • PDF

Preparation and Application of Microcapsule - Preparation and Properties of Suspension-Polymerized Poly(vinyl alcohol) Microsphere with Core-Shell Structure - (마이크로캡슐의 제조와 응용 - 분산중합에 의한 core/shell 구조를 지닌 Poly(vinyl alcohol) Microsphere의 제조와 특성 -)

  • 김혜인;김효정;박수민
    • Textile Coloration and Finishing
    • /
    • v.15 no.4
    • /
    • pp.65-72
    • /
    • 2003
  • Poly(ethylene-co-vinylacetate) (EVA) microspheres were prepared by a thermally induced phase separation. Poly(vinyl Alcohol) (EVAL) microsphere with Core-Shell Structure were synthesized by a saponification on sheath of EVA microspheres. The size of EVA core/EVAL shell microsphere was decreased from $4.09\mu{m}\;to\;2.55\mu{m}$ by partial saponification of $NaOH/Na_2SO_4$/methanol(2 : 1 : 1 by weight) at $60^\circ{C}$ for 4h to produce a saponified surface layer of about 60% of original radius. In this process, the surface layer of EVAL microsphere was dissolved partially and morphology of surface was not showed. Add-on of cotton and silk printed with EVA core/EVAL shell microsphere was increased and that of printed PET was decreased. In case of EVA core/EVAL shell microsphere, Hand of cotton and silk printed was flexible and fullness.

Flame Retardancy of Cellulose Fabrics Treated with 3-(Hydroxyphenyl Phosphinyl) Propanoic Acid

  • Zhang, Lianping;Kim, Sam-Soo;Lee, Jae-Woong
    • Textile Coloration and Finishing
    • /
    • v.20 no.5
    • /
    • pp.1-6
    • /
    • 2008
  • 3-(Hydroxyphenyl phosphinyl) propanoic acid (HPPA) has been one of the most commonly used durable flame retardant agents for polyethylene terephthalate (PET) for many years. We intended to explore the application of HPPA to cellulose fabrics as formaldehyde-free phosphorus based flame retardants (FRs) through green chemistry process. The flame retardancy of the flame-retardant treated cellulose fabrics were characterized by using inductively coupled plasma spectroscopy (ICP) and limiting oxygen index (LOI). Structural changes of the treated cellulose fabrics were carried out by thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR) spectroscopy. To enhance the flame retardancy of HPPA treated cellulose fibers, glycerol polyglycidyl ether (GPE), a crosslinking agent was employed. Both HPPA and GPE treated cotton fabric imparted an LOI value over 26.

Physiological Responses to Different Exercise Intensities while Wearing Different Types of Sportswear Materials (스포츠웨어 착용에 따른 운동시 온열생리반응에 미치는 영향)

  • Kim, Tae-Gyou;Sung, Su-Kwang
    • Fashion & Textile Research Journal
    • /
    • v.8 no.1
    • /
    • pp.123-128
    • /
    • 2006
  • For the purpose of examining the relationship of physiological and subjective responses to different exercise intensities and varied types of sportswear material, under environmental condition $20{\pm}1^{\circ}C$ $50{\pm}3%$RH, five men who wear four different kinds of sportswear which have same clothing cover area. The subjects exercised for 20 min with a 20 min pre-exercise rest period and another 20 min post-exercise recovery period. Throughout the 60 min. duration, we monitored the local skin temperature, rectal temperature, clothing microclimate and subjective sensation. The mean skin temperature was recorded to range from $33.5{\sim}34.1^{\circ}C$ for the entire duration of the experiment with the highest temperature observed at the 7th min after starting the exercise. During the exercise intensity at THR 20, the lowest recorded temperature was at the 5th min of the recovery time and stabilized at the 10th min. However, in the exercise intensity condition at THR 70, the temperature declined steadily until the end of the experiment. With regard to clothing materials, cotton 100% and Polyester/Cotton blended fabrics knit(35/65) was $0.5{\sim}0.7^{\circ}C$ maintained lower than Polyester 100% and polyester/Cotton blended woven fabrics (65/35). In the case of the rectal temperature at THR 70 in case of PET 100%, Polyester/Cotton blended woven fabrics (35/65) was higher $0.2{\sim}0.5^{\circ}C$ than other sportswear throughout the duration of the experiment.

Determination of Heavy metals on the non-woven in wet wipes using ICP-MS

  • Choi, Sung-Min;Song, Jin-Kun;Kim, Sang-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.195-203
    • /
    • 2016
  • Heavy metals have been analyzed on the non-woven from the 24 kinds of wet wipes and 8 kinds of mask packs. The following materials used in the non-woven according to each product are: rayon+polyester for the 12 wet wipe products, rayon+PET for the 5 wet wipe products, and rayon, cotton, rayon+polyester+cotton, pulp+polypropylene for the rest of the wet wipe products. No further information on the materials was found on the 3 wet wipes and 8 mask packs. However, polyester may be applied for the non-woven in wet wipes, because PET is part of the polyester group. The heavy metals analysis in the 24 kinds of wet wipes and 8 kinds of mask packs revealed the following: arsenic was found from $47.14{\pm}1.13$ to $71.75{\pm}1.64{\mu}g/L$ on the 3 products, the amount of nickel in the 2 products were $261.26{\pm}5.14$ and $1,242.63{\pm}43.71{\mu}g/L$, $53.69{\pm}1.45$ and $103.52{\pm}2.02mg/L$ on the 2 mask packs. It was also revealed that lead was detected from $7.23{\pm}0.32$ to $55.67{\pm}1.46{\mu}g/L$ on the 6 wet wipes, antimony was ranged from $187.86{\pm}5.24$ to $19,558.35{\pm}3,537.30{\mu}g/L$ on the 12 wet wipes, and $5.25{\pm}0.25$ and $8,936{\pm}55.22{\mu}g/L$ on the 2 mask packs. No cadmium, mercury, or thallium were detected from all the products. A high concentration of antimony might come from antimony trioxide, which was used as a catalyst when manufacturing the polyester. Therefore, it is strongly recommended that a non-woven used for cosmetic purposes should not use heavy metals as a catalyst when manufacturing, and it's important to clarify which materials are used in non-woven.

A Study on Dynamic Moisture Transfer in Textiles Using Cobaltous Chloride Method (염화코발트법을 이용한 직물의 동적 수분전달에 대한 연구)

  • Hong Kyunghi;Kim Eunsook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.13 no.4
    • /
    • pp.400-411
    • /
    • 1989
  • Moisture related properties of fabrics in dynamic modes are considered to be important in the judgement of the subjective comfort characteristics of clothing fabrics. In the current study, an attempt to improve the cobaltous chloride test method was made which has been known as a convenient screening test for dynamic surface wetness. The color changes of cobaltous chloride treated fabrics on the simulated sweating skin were calibrated against standard color strips. The standard color strips were made of all typs of test fabrics and installed inside of the test tubes containing a series of saturated salt solutions, which gives more quantitative informations on dynamic moisture transfer Influences of fiber types and finishes on dynamic moisture transfer in textiles were studied using a single layer of fabric samples. Fiber types included $100\%$ cotton, C/P 50/50, C/P 35/65. Durable press and soil release finished cotton and C/P 50/50 fabrics were also included. There were significant fiber effects on the dynamic moisture transfer. The order of time taken to reach to the specified $\%$ RH was C/P 35/65$100\%$ cotton fabrics. It was possible to detect significant finish effects by increasing the concentrations of cobaltous chloride solutions. The order of time taken to reach to the specified $\%$ R.H was durable press$100\%$ cotton, C/P 50/50, C/P 35/65 and $100\%$ PET were placed at the inner side of the outer layer and tested. It was shown that cobaltous chloride treated $100\%$ cotton fabirc was easier to detect color changes than C/P blend fabic in the double layer experiments. By placing test sample under the cobaltous chloride treated cotton fabrics, it was able to detect the differences among the test samples, some of which were known to be difficult in padding with cobaltous chloride solutions. Besides, the double layer method would provide with the broader application of the cobaltous chloride method in !uture, since it is possible to test the dynamic moisture transfer of clothing as worn.

  • PDF

Chemical Characteristics, Antimicrobial Activity and Dyeability of Gyeongsanbansi (Persimmon kaki) Unripe Juice Extraction and Fermented Liquor (경산반시의 미숙감 착즙액과 발효액의 화학적 특성, 항균성 및 염색성)

  • Heo, Buk-Gu;Park, Yun-Jum;Kim, Tae-Choon;Kim, Hyun-Ju;Park, Su-Min;Jang, Hong-Gi;Kim, Kyung-Su;Lee, Kyung-Dong;Yun, Jae-Gill
    • Korean Journal of Plant Resources
    • /
    • v.22 no.5
    • /
    • pp.438-445
    • /
    • 2009
  • This study was conducted to examine the chemical characteristics, antibacterial activity and dyeability of several juices made from Persimmon cv. 'Gyeongsanbanshi'. Young fruits of persimmon were harvested at 1st August, 2006. Fruit juice was extracted soon after harvesting, some of them were stored at $4{\sim}6^{\circ}C$ for 6 months or fermented at room temperature for 6 months. $L^*$ values of vinegar was 43.5 higher than those of fresh juice and fermented liquor. Inorganic matter contents in fresh juice, fermented liquor and vinegar were higher in the order of K ($1696{\sim}2880\;mg$/100 g), Ca ($166.7{\sim}417.9\;mg$/100 g), Mg ($203.9{\sim}214.4\;mg$/100 g), P ($37.9{\sim}109.8\;mg$/100 g), Na ($13.2{\sim}23.3\;mg$/100 g) and Fe ($8.4{\sim}14.2\;mg$/100 g). Cotton fabrics dyed with the fermented liquor and vinegar had the largest inhibitory zone against the gram-positive microorganisms with range of $16.0{\sim}35.0\;mm$. Cotton fabrics dyed with the fresh juice showed $9.0{\sim}9.5\;mm$ inhibitory zone against the gram-negative microorganisms, $15.0{\sim}21.0\;mm$ with the juice stored at $4{\sim}6^{\circ}C$ for 6 months, $22.0{\sim}23.0\;mm$ with the fermented liquor and $9.0{\sim}35.0\;mm$ with vinegar. The hue of cotton fabrics dyed with the fermented liquor had a YR levels, and antibacterial activity of them were 78.5%.

Durability Enhancement of Textile Materials for Thermotherapy Massager (온열안마기용 섬유재료의 내구성 향상)

  • Lee, Joo-Young;Kim, Ho-Dong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.2292-2299
    • /
    • 2010
  • The wear and abrasion mechanism of conventional PET/Cotton fabric which is used as a lining layer for thermotherapy massager was elaborately investigated in order to increase the life-span of the fabrics for Thermotherapy Massager. Based on the destruction mechanism, the feasible PET fabrics were prepared and its anti-wearing performance was evaluated. It is revealed that the wearing destruction is mainly caused by the repeat abrasion on a specific part of folded fabric as well as abrasion itself. Therefore, it is necessary that the prevention of fabric folding while massager is running is essential and the recovery from the crease on a fabric is also necessary to solve this problem. Covered elastic yarn, high twisted yarn, change of fabric structure or different fiber were utilized to prepare the possible alternatives. As a result, the anti-wearing performance of the fabrics are greatly improved to have about 2 times and 1.5 times longer life-span for the fabric with covered elastic yarn and high twisted yarn, respectively.

Dyeing Properties of Reactive Disperse Dyes on Nylon, PET, Cotton and Mixture Fabrics (반응성분산염료의 나일론, PET, 면 및 복합소재에 대한 염색성)

  • Lee, Hyo-Young;Kim, Seung-Kwan;Kim, Sung-Dong;Lee, Jong-Lyel
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.34-34
    • /
    • 2011
  • PET/면, 나일론/PET, 나일론/면 등 다양한 복합섬유소재를 염색하기 위해서는 복합섬유소재를 구성하는 각각의 섬유소재에 따라 적합한 염료를 선정하고 그에 맞는 염색방법을 사용하여 진행되고 있다. 하지만 이런 경우 색상과 견뢰도 등의 물성을 맞추기 위한 복잡한 염색공정 및 긴 염색시간에 의한 생산비용 상승 등 여러 문제점이 있다. 이러한 문제점을 해결하기 위해 하나의 염료를 이용하여 다양한 섬유를 염색하는 방법에 대한 많은 연구가 이루어지고 있다. 새로운 염료합성의 경우 섬유와 결합할 수 있는 반응기를 분산염료구조에 도입하여 염색조건에 따라 다양한 섬유를 염색할 수 있는 universal dye의 개발에 초점이 맞추어져 있다. 반응성염료와 분산염료의 특성을 동시에 만족시키기 위한 일환으로서 염료의 분자 구조 내에 상기의 염료특성을 동시에 발휘하는 소위 "반응성 분산염료"의 개발이 이에 속한다. 본 연구의 목적은 화학구조가 다른 네 종류의 sulphatoethylsulphone기를 갖는 반응성분산염료들을 합성하고 이들의 나일론, PET, 면 및 교직물에 대한 염색성을 분석하는 것이다. 면 섬유에 대한 Dye 1~4의 염색온도에 따른 염색성을 살펴보면, 각 염료들의 염색성은 염색온도에 따라 큰 영향을 받고 있음을 알 수 있으며, Dye 1, 4는 염색온도가 높을수록 K/S 값이 증가하고 Dye 2, 3은 염색온도가 낮을수록 K/S 값이 증가함을 알 수 있다. Nylon에 대한 Dye 1의 염색속도는 pH 4 > pH 5 > pH 8 > pH 7 > pH 6의 순서로 나타나 pH 6에서의 염착 평형이 pH 4보다 40분 정도 늦게 도달하였다. 나일론과 PET의 동욕염색에 있어 Dye 1은 나일론의 경우 초기부터 빠른 흡착을 보이며 $100^{\circ}C$가 되는 60분에는 K/S값이 16에 도달하여 염착 평형에 근접한 것을 알 수 있으며, PET는 $100-200^{\circ}C$ 사이에서 염색속도가 빨라지며 본격적으로 흡수하였다. N/C 교직물에 대한 Dye 2, 3의 빌드업성은 두 염료 모두 염료농도의 증가에 따라 K/S 값 역시 선형적으로 증가하는 것으로 나타났다. 나일론 섬유는 네 가지 염료로 우수하게 염색되었고, 면 섬유는 수용성기를 가진 Dye 2와 3, 그리고 PET 섬유는 소수성이 높은 Dye 1과 4가 적합하였다. N/P 및 N/C 교직물의 염색에 있어 나일론 성분으로 염료가 더 많이 흡착하여 나일론섬유가 더 진하게 염색되지만 교직물의 직물조직에 의하여 표면과 이면은 각각 거의 동색으로 보였다.

  • PDF