• Title/Summary/Keyword: PES substrate

Search Result 85, Processing Time 0.034 seconds

고분자 기판상에 제작한 Al이 첨가된 ZnO 박막에 관한 연구

  • Kim, Gyeong-Hwan;Jo, Beom-Jin;Geum, Min-Jong
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.10a
    • /
    • pp.60-63
    • /
    • 2006
  • Preparing AZO thin films on the polymer substrate has been widely studied Because AZO thin film has the potential applications. In this study, we prepared AZO thin films on polyethersulfon (PES) at room temperature. The AZO thin films were prepared at $O_2$ gas flow rate of 0.05 and sputtering power of 100W with different film thickness by facing targets sputtering method. The electrical, optical and crystallographic properties of AZO thin films were measured by Hall Effect measurement system, UV/VIS spectrometer, SEM and XRD. From the results, we obtained AZO thin films with a low resistivity, a transmittance of over 80% and c-axis preferred orientation.

  • PDF

The Structure, Optical and Electrical Characteristics of AZO Thin Film Deposited on PET Substrate by RF Magnetron Sputtering Method (PET 기판 위에 RF magnetron sputtering으로 증착한 AZO 박막의 구조적, 광학적, 전기적 특성)

  • Lee, Yun seung;Kim, Hong bae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.4
    • /
    • pp.36-40
    • /
    • 2016
  • The 2 wt.% Al-doped ZnO(AZO) thin films were fabricated on PET substrates with various RF power 20, 35, 50, 65, and 80W by using RF magnetron sputtering in order to investigate the structure, electrical and optical properties of AZO thin films in this study. The XRD measurements showed that AZO films exhibit c-axis orientation. At a RF power of 80W, the AZO films showed the highest (002) diffraction peak with a FWHM of 0.42. At a RF power of 65W, the lowest electrical resistivity was about $1.64{\times}[10]$ ^(-4) ${\Omega}-cm$ and the average transmittance of all films including substrates was over 80% in visible range. Good transparence and conducting properties were obtained due to RF power control. The obtained results indicate that it is acceptable for applications as transparent conductive electrodes.

Rubbing effect on orientation of Copper Phthalocyanine for flexible organic field-effect transistors

  • Kim, Hyun-Gi;Jang, Jung-Soo;Choi, Suk-Won;Ishikawa, Ken;Takezoe, Hideo;Kim, Sung-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1319-1321
    • /
    • 2009
  • Copper phthalocyanine (CuPc) Field-effect transistors (FETs) was successfully fabricated on plastic substrates. Orientation of CuPc crystallites on substrate could be obtained via rubbing process. It was revealed that CuPc crystallites were perpendicularly aligned on PES substrates with the rubbing direction. The performance of FETs was affected by orientation of CuPc on rubbed substrates.

  • PDF

Effect of process parameters of antimony doped tin oxide films prepared on flexible substrate at room temperature

  • Lee, Seong-Uk;Hong, Byeong-Yu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.175-175
    • /
    • 2010
  • Transparent conducting oxide (TCO) films are widely used as transparent conducting thin film material for application in various fields such as solar cells, optoelectronic devices, heat mirrors and gas sensors, etc. Recently the increased utilization of many transparent electrodes has accelerated the development of inexpensive TCO materials. Indium tin oxide (ITO) film is well-known for TCO materials because of its low resistivity, but there is disadvantage that it is too expensive. ZnO film is cheaper than ITO but it shows thermally poor stability. On the contrary, antimony-doped tin oxide films (ATO) are more stable than TCO films such as Al-doped zinc oxide (AZO) and ITO. Moreover, SnO2 film shows the best thermal and chemical stability, low cost and mechanical durability except the poor conductivity. However, annealing is proved to improve the conductivity of ATO film. Therefore, in this work, antimony (6 wt%) doped tin oxide films to improve the conductivity were deposited on 7059 corning glass by RF magnetron sputtering method for the application to transparent electrodes. In general, of all TCO films, glass is the most commonly selected substrate. However, for future development in flexible devices, glass is limited by its intrinsic inflexibility. In this study, we report the growth and properties of antimony doped tin oxide (ATO) films deposited on PES flexible substrate by using RF magnetron sputtering. The optimization process was performed varying the sputtering parameters, such as RF power and working pressure, and parameter effect on the structural, electrical and optical properties of the ATO films were investigated.

  • PDF

Effects of Substrates on Nanofiltration Characteristics of Multilayer Polyelectrolyte Membranes (다층 고분자 전해질 막의 나노여과 특성에 미치는 지지체의 영향)

  • Hong, Seong-Uk
    • Membrane Journal
    • /
    • v.18 no.2
    • /
    • pp.185-190
    • /
    • 2008
  • In a previous study, we probed the potential of poly(styrene sulfonate) (PSS)/poly(diallyldimethylammonium chloride) (PDADMAC) nanofiltration (NF) membranes for the separation of monovalent anions, with an emphasis on the selective rejection of $F^-$. Remarkably, deposition of $(PSS/PBADMAC)_4PSS$ films on porous alumina supports yielded membranes that exhibited $Cl^-/F^-$ selectivity > 3 with minimal $Cl^-$ rejection, and a solution flux of $3.5m^3/m^2$-day at 4.8 bar. When the number of PSS/PDADMAC bilayers was increased from 4.5 to 5.5, however, $F^-$ rejection decreased from 73% to 50% and $Cl^-/F^-$ selectivity dropped to 1.9. Addition of another bilayer to form $(PSS/PDADMAC)_6$ PSS films resulted in a significant increase in $Cl^-$ rejection to give essentially no $Cl^-/F^-$ selectivity. The decrease of selectivity with deposition of more than 4.5 bilayers was not expected and it was unclear whether this characteristic was substrate independent. In this study, to investigate the effect of substrates on NF performance of multilayer polyelectrolyte membranes, PSS/PDADMAC films were deposited on 50 kDa polyethersulfone (PES) ultrafiltration supports instead of porous alumina supports. The results indicate that, although fluoride rejection and the number of bilayers at which a maximum $F^-$ rejection occurs are different, the trend is similar for both types of substrates. Therefore, we can conclude that the M: characteristics of multilayer polyelectrolyte membranes may be substrate independent.

Effects of RF power on the Electrical and Optical Properties of GZO Thin Films Deposited on Flexible Substrate (RF 파워가 플렉시블 기판에 성장시킨 GZO 박막의 전기적 및 광학적 특성에 미치는 영향)

  • Joung, Yang-Hee;Kang, Seong-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2497-2502
    • /
    • 2014
  • The 5 wt.% Ga-doped zinc oxide (GZO) thin films were fabricated on PES substrates with various RF power 50~80 W by using RF magnetron sputtering in order to investigate the optical and electrical properties of GZO thin films. The XRD measurement showed that GZO thin films exhibit c-axis orientation. At a RF power of 70W, the GZO thin film showed the highest (002) diffraction peak with a Full-Width-Half-Maximum (FWHM) of $0.44^{\circ}$. AFM analysis showed that the lowest surface roughness (0.20 nm) was obtained for the GZO thin film fabricated at 70 W of RF power. The electrical property indicated that the minimum resistivity ($6.93{\times}10^{-4}{\Omega}{\cdot}cm$) and maximum carrier concentration ($7.04{\times}10^{20}cm^{-3}$) and hall mobility ($12.70cm^2/Vs$) were obtained in the GZO thin film fabricated at 70W of RF power. The optical transmittance in the visible region was higher than 80 %, regardless of RF power. The optical band-gap showed the slight blue-shift with increased in carrier concentration which can be explained by the Burstein-Moss effect.

Synthesis and Film Properties of Cross-linked Polysulfone with Imide Side Chain (이미드 곁가지로 가교되는 폴리설폰의 합성 및 필름 특성)

  • Lee Eun-Sang;Hong Sung-Kwon;Kim Yong-Seok;Lee Jae-Heung;Kim In-Sun;Won Jong-Chan
    • Polymer(Korea)
    • /
    • v.30 no.2
    • /
    • pp.140-145
    • /
    • 2006
  • The mort commonly available substrate material is glass in the display fibrication process. However, glass is not desirable due to its heaviness and fragility. Recently, plastics such polysulfone (PSF), polyethesulfone (PES), polycarbonate (PC), polyethylene terephthalate (PET) and cyclic olefin polymers (COP) have been investigated to replace glass as a substrate material for display fibrication. Plastic substrates are advantageous in that they are lightweight, huh impart resistance, flexibility, and ability for roll to roll manufacturing process. But many plastics have poor chemical resistance in organic solvent. The chemica resistance is also lequired because they are exposed to solvents for various chemical treatments din the manufacturing process. So, we have an interest in the chemical modification of PSF to improve chemical resistance. We introduced crosslinkable imide moieties using chloromethylation method for the modification of PSF which could be overcome above shortcomings for display substrate based on plastic film. We prepared the cross-linked polysulfone films which were represented chemical resistance in HeOH, THF, DMSO and NMP. The thermal properties were measured by TGA, DSC and TMA. As the results, we have confirmed to enhance of the thermal property. They had low coefficient of thermal expansion (CTE) which decreased to 15% and had increased $T_g\;from\;180^{\circ}C\;to\;252^{\circ}C$. Cross-linked polysulfone films with imide side-chain had good optical properties and chemical resistance so that they could be used as flexible display substrate.

The effect of $Ar\;+\;H_2$ Plasma on the Low Temperature ITO Film Synthesized on Polymer (폴리머 기판상에 합성된 저온 ITO 박막에 미치는 $Ar\;+\;H_2$ 플라즈마의 영향)

  • Moon, Chang-S.;Chung, Yun-M.;Lee, Ho-Y.;Kim, Yong-M.;Kim, Kab-S.;Gaillard, M.;Han, Jeon-G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.5
    • /
    • pp.206-209
    • /
    • 2006
  • Indium tin oxide (ITO) films were synthesized on polymer (PES, polyethersulfone) at room temperature by pulsed DC magnetron sputtering. By the control of introducing hydrogen to argon atmosphere, the resistivity of ITO films was obtained at $5.27\;{\times}\;10^{-4}\;{\Omega}{\cdot}cm$ without substrate heating in comparison with $2.65\;{\times}\;10{-3}\;{\Omega}{\cdot}cm$ under hydrogen free condition. ITO film synthesized at Ar condition was changed from amorphous to crystalline. These result from the enhancement of electron temperature in $Ar\;+\;H_2$ plasma, which induces the increase of ionization of target materials and argon. The dominant increase of ions such as In II and O II and neutral Sn I was monitored by optical emission spectroscopy (OES). Thermal energy required for the crystalline film formation is compensated by kinetic energy transfer through ion bombardments to substrate.

The optical, electrical and structural properties in indium zinc oxide films deposited by LF magnetron sputtering

  • Kim, Eun-Lyoung;Jung, Sang-Kooun;Kim, Myung-Chan;Lee, Yun-Su;Song, Kap-Duk;Park, Lee-Soon;Sohn, Sang-Ho;Park, Duck-Kyu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1402-1405
    • /
    • 2006
  • Using a indium zinc oxide (IZO) alloy target with a ratio of 90:10 in wt%, highly transparent conducting oxide (TCO) thin films are prepared on polyethersulfone (PES) substrates by lowfrequency (LF) magnetron sputtering system. These films have amorphous structures with excellent electrical stability, surface uniformity and high optical transmittance. Experiments were carried out as a function of applied voltage. At optimal deposition conditions, thin films of IZO with a sheet resistance of 29 ohm/sq. and an optical transmission of over 82 % in the visible spectrum range were achieved. The IZO thin films fabricated by this method do not require substrate heating during the film preparation or any additional post-deposition annealing treatment.

  • PDF

Patterning self-assembled pentacene nanolayer by EUV-induced 3-dimensional polymerization

  • Hwang, Han-Na;Han, Jin-Hui;Im, Jun;Sin, Hyeon-Jun;Kim, Yeong-Deuk;Hwang, Chan-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.65-65
    • /
    • 2010
  • Extreme ultraviolet lithography (EUVL) is expected to be applied for making patterns below 32 nm in device industry. An ultrathin EUV photoresist (PR) of a few nm in thickness is required to reduce minimum feature size further. Here, we show that pentacene molecular layers can be employed as a new EUV resist for the first time. Dots and lines in nm scale are successfully realized using the new molecular resist. We clearly provide the mechanism for forming the nanopatterns with scanning photoemission microscope (SPEM), EUV interference lithography (EUV-IL), atomic force microscope (AFM), photoemission spectroscopy (PES), etc. The molecular PR has several advantages over traditional polymer EUV PRs; for example, high thermal/chemical stability, negligible outgassing, ability to control the height and width on the nanometer scale, leaving fewer residuals, no need for a chemical development process and thus reduction of chemical waste to make the nanopatterns. Besides, it could be applied to any substrate to which pentacene bonds chemically, such as $SiO_2$, SiN, and SiON, which is of importance in the device industry.

  • PDF