• Title/Summary/Keyword: PENELOPE

Search Result 38, Processing Time 0.023 seconds

Train induced dynamic response of a pedestrian tunnel under a four-track surface railway for different soil water contents

  • Farghaly, Ahmed Abdelraheem;Kontoni, Denise-Penelope N.
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.341-353
    • /
    • 2018
  • A reinforced concrete pedestrian tunnel is constructed under a four-track surface railway. Heavy rainfall and soil exposure to drying lead to soil with different water content throughout the year. A railway is an open utility that is subject to rainfall without control on the quantity of the water on it and when there is a tunnel under a railway, the water content of the soil around the tunnel is very influential. This research shows the effects of change of water content in the soil around a pedestrian tunnel under a four-track surface railway. The pedestrian tunnel and the soil block around the tunnel are modeled in 3D by the FEM and are studied under the vibrations induced by the moving trains on the four-track surface railway for different soil water contents and the effects of the soil water content on the dynamic behavior of the tunnel and the surrounding soil are demonstrated.

TMD effectiveness for steel high-rise building subjected to wind or earthquake including soil-structure interaction

  • Kontoni, Denise-Penelope N.;Farghaly, Ahmed Abdelraheem
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.423-432
    • /
    • 2020
  • A steel high-rise building (HRB) with 15 stories was analyzed under the dynamic load of wind or four different earthquakes taking into consideration the effect of soil-structure interaction (SSI) and using tuned mass damper (TMD) devices to resist these types of dynamic loads. The behavior of the steel HRB as a lightweight structure subjected to dynamic loads is critical especially for wind load with effect maximum at the top of the building and reduced until the base of the building, while on the contrary for seismic load with effect maximum at the base and reduced until the top of the building. The TMDs as a successful passive resistance method against the effect of wind or earthquakes is used to mitigate their effects on the steel high-rise building. Lateral displacements, top accelerations and straining actions were computed to judge the effectiveness of the TMDs on the response of the steel HRB subjected to wind or earthquakes.

Mitigation of the seismic response of a cable-stayed bridge with soil-structure-interaction effect using tuned mass dampers

  • Kontoni, Denise-Penelope N.;Farghaly, Ahmed Abdelraheem
    • Structural Engineering and Mechanics
    • /
    • v.69 no.6
    • /
    • pp.699-712
    • /
    • 2019
  • A cable-stayed bridge (CSB) is one of the most complicated structures, especially when subjected to earthquakes and taking into consideration the effect of soil-structure-interaction (SSI). A CSB of a 500 m mid-span was modeled by the SAP2000 software and was subjected to four different earthquakes. To mitigate the harmful effect of the vibration generated from each earthquake, four mitigation schemes were used and compared with the non-mitigation model to determine the effectiveness of each scheme, when applying on the SSI or fixed CSB models. For earthquake mitigation, tuned mass damper (TMD) systems and spring dampers with different placements were used to help reduce the seismic response of the CBS model. The pylons, the mid-span of the deck and the pylon-deck connections are the best TMDs and spring dampers placements to achieve an effective reduction of the earthquake response on such bridges.

Nonlinear analysis of a riverine platform under earthquake and environmental loads

  • Farghaly, Ahmed Abdelraheem;Kontoni, Denise-Penelope N.
    • Wind and Structures
    • /
    • v.26 no.6
    • /
    • pp.343-354
    • /
    • 2018
  • A realistic FEM structural model is developed to predict the behavior, load transfer, force distribution and performance of a riverine platform under earthquake and environmental loads. The interaction between the transfer plate and the piles supporting the platform is investigated. Transfer plate structures have the ability to redistribute the loads from the superstructure above to piles group below, to provide safe transits of loads to piles group and thus to the soil, without failure of soil or structural elements. The distribution of piles affects the distribution of stress on both soil and platform. A materially nonlinear earthquake response spectrum analysis was performed on this riverine platform subjected to earthquake and environmental loads. A fixed connection between the piles and the platform is better in the design of the piles and the prospect of piles collapse is low while a hinged connection makes the prospect of damage high because of the larger displacements. A fixed connection between the piles and the platform is the most demanding case in the design of the platform slab (transfer plate) because of the high stress values developed.

Effect of Cultivar and Processing on the Hemagglutinin Activity of Soybean

  • Felipe, Penelope;Sok, Dai-Eun;Heo, Ok-Soon;Kim, Hyoung-Chin;Yoon, Won-Kee;Kim, Hwan-Mook;Kim, Mee-Ree
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.91-95
    • /
    • 2006
  • Effects of cultivars, cooking, and processing on hemagglutinin activity were evaluated by observing macroscopic hemagglutination using serial twofold dilution of trypsinized human blood type-O or rabbit blood. Hemagglutinin activity was expressed as maximal geometric dilution fold. Agglutination of rabbit blood was more sensitive compared to human blood. Hemagglutinin activities of glyphosate-tolerant soybean, HS2906, and imported conventional soybeans were not statistically different, although significant differences were observed among conventional soybean cultivars cultivated in Korea (286 to 1535 HU/mg protein). Time required to reach fifty percent inhibition of hemagglutinin activity ($IT_{50}$) value decreased with increasing cooking temperature and pressure. Most effective conventional cooking method to inhibit hemagglutinin activity was pressure-cooking ($IT_{50}$: 1.36 min). Calculated activation energy based on reaction rate constant was 4.88 kcal. No hemagglutinin activities were detected in processed soybean products such as tofu, soybean paste, and soysauce.

Application of Geometry-Efficiency Variation Technique to Activity Measurement of $^{204}T1$ for 3-PM Liquid Scintillation Counting

  • Lee Hwa Yong;Seo Ji Suk;Kwak Ji Yeon;Hwang Han-Yull;Lee K. B.;Lee Jong Man;Park Tae Soon
    • Nuclear Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.121-126
    • /
    • 2004
  • 3-PM liquid scintillation counting using the geometry-efficiency variation technique has been applied to the activity measurement of $^{204}T1$, which decays to $^{204}Hg\;and\;^{204}Pb\;by\;{\beta}^-$ and E.C., respectively. The TDCR values K have been derived over a wide range, 0.78 < K < 0.97, by displacing the detectors up to 50 mm away from an unquenched liquid scintillation sample $^{204}Tl$. The derived plots of the logic sums of double coincidences $N_D(K)$ very K vary linearly in the observed regions. The fractions of losses due to electron capture decay have been taken into account by employing a PENELOPE Monte Carlo simulation. The calibrated activity is 102.3 kBq at a reference date of July 1st, 2002 (UT) with a combined uncertainty of $0.63\%$. This is consistent with the value determined by means of the CIEMAT/NIST method at KRISS.

The effect of base isolation and tuned mass dampers on the seismic response of RC high-rise buildings considering soil-structure interaction

  • Kontoni, Denise-Penelope N.;Farghaly, Ahmed Abdelraheem
    • Earthquakes and Structures
    • /
    • v.17 no.4
    • /
    • pp.425-434
    • /
    • 2019
  • The most effective passive vibration control and seismic resistance options in a reinforced concrete (RC) high-rise building (HRB) are the base isolation and the tuned mass damper (TMD) system. Many options, which may be suitable or not for different soil types, with different types of bearing systems, like rubber isolator, friction pendulum isolator and tension/compression isolator, are investigated to resist the base straining actions under five different earthquakes. TMD resists the seismic response, as a control system, by reducing top displacement or the total movement of the structure. Base isolation and TMDs work under seismic load in a different way, so the combination between base isolation and TMDs will reduce the harmful effect of the earthquakes in an effective and systematic way. In this paper, a comprehensive study of the combination of TMDs with three different base-isolator types for three different soil types and under five different earthquakes is conducted. The seismic response results under five different earthquakes of the studied nine RC HRB models (depicted by the top displacement, base shear force and base bending moment) are compared to show the most suitable hybrid passive vibration control system for three different soil types.

GEANT4-based Monte Carlo Simulation of Beam Quality Correction Factors for the Leksell Gamma Knife® PerfexionTM

  • Schaarschmidt, Thomas;Kim, Tae Hoon;Kim, Yong Kyun;Yang, Hye Jeong;Chung, Hyun-Tai
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1814-1820
    • /
    • 2018
  • With the publication of TRS-483 in late 2017 the IAEA has established an international code of practice for reference dosimetry in small and non-standard fields based on a formalism first suggested by Alfonso et al. in 2008. However, data on beam quality correction factors ($k^{f_{msr},f_{ref}}_{Q_{msr},Q_0}$) for the Leksell Gamma $Knife^{(R)}$ $Perfexion^{TM}$ is scarce and what little data is available was obtained under conditions not necessarily in accordance with the IAEA's recommendations. This study constitutes the first systematic attempt to calculate those correction factors by applying the new code of practice to Monte Carlo simulation using the GEANT4 toolkit. $k^{f_{msr},f_{ref}}_{Q_{msr},Q_0}$ values were determined for three common ionization chamber detectors and five different phantom materials, with results indicating that in most phantom materials, all chambers were well suited for reference dosimetry with the Gamma $Knife^{(R)}$. Similarities and differences between the results of this study and previous ones were also analyzed and it was found that the results obtained herein were generally in good agreement with earlier PENELOPE and EGSnrc studies.

The Relationship between Flight Crew's Regulatory Focus and Adaptive Performance - Organizational Commitment as a Moderator - (조절초점과 적응수행의 관계에서 조직유효성의 영향 - 조직몰입의 조절효과 -)

  • Yoo, Byeong-Seon;Lee, Dong-sik
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.1
    • /
    • pp.20-29
    • /
    • 2021
  • This study examined the effect of regulatory focus on adaptative performance for pilots and co-pilots engaged in domestic civil airlines, and verified the moderating effect of organizational commitment in the process of regulatory focus on adaptative performance. For study, the scale developed by Lockwood Penelope and others validated and developed to measure the regulatory focus was adapted to suit the aviation scene and examined through this. As a result of the study, among the sub-variables of the regulatory focus scale, the promotion focus had a statistically significant and positive effect on the adaptative performance. and derived that the prevention focus had a statistically significant negative effect on the adaptative performance. In order to examine the moderating effect of organizational commitment in the relationship between regulatory focus and adaptative performance, the results of hierarchical regression analysis were conducted after controlling the rank, background, and career. Organizational commitment showed a statistically significant positive moderating effect in the relationship of adaptative performance. In addition, as a result of the verification according to the level of organizational commitment, prevention focus and adaptative performance showed statistically significant negative effects when organizational commitment was high.

Experimental and numerical study of a steel plate-based damper for improving the behavior of concentrically braced frames

  • Denise-Penelope N. Kontoni;Ali Ghamari;Chanachai Thongchom
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.185-201
    • /
    • 2023
  • Despite the high lateral stiffness and strength of the Concentrically Braced Frame (CBF), due to the buckling of its diagonal members, it is not a suitable system in high seismic regions. Among the offered methods to overcome the shortcoming, utilizing a metallic damper is considered as an appropriate idea to enhance the behavior of Concentrically Braced Frames (CBFs). Therefore, in this paper, an innovative steel damper is proposed, which is investigated experimentally and numerically. Moreover, a parametrical study was carried out to evaluate the effect of the mechanism (shear, shear-flexural, and flexural) considering buckling mode (elastic, inelastic, and plastic) on the behavior of the damper. Besides, the necessary formulas based on the parametrical study were presented to predict the behavior of the damper that they showed good agreement with finite element (FE) results. Both experimental and numerical results confirmed that dampers with the shear mechanism in all buckling modes have a better performance than other dampers. Accordingly, the FE results indicated that the shear damper has greater ultimate strength than the flexural damper by 32%, 31%, and 56%, respectively, for plates with elastic, inelastic, and plastic buckling modes. Also, the shear damper has a greater stiffness than the flexural damper by 43%, 26%, and 53%, respectively, for dampers with elastic, inelastic, and plastic buckling modes.