• Title/Summary/Keyword: PEG 수용액

Search Result 43, Processing Time 0.021 seconds

Separation of Antioxidants and Glucose from Grape Skin Extract Using Polyethylene Glycol and Sodium Citrate (폴리에틸렌글리콜과 구연산 나트륨을 이용하여 포도껍질 추출물에서 항산화물질과 포도당 분리)

  • Eun Min Shin;Yeong Eun Joo;Su Min Jung;Jaechan Suh;Chang-Joon Kim
    • Clean Technology
    • /
    • v.29 no.2
    • /
    • pp.109-117
    • /
    • 2023
  • The purpose of this study is to develop a method for separating antioxidants and sugars from grape skin extract. The extract was first mixed with a variety of organic solvents to investigate whether the separation was feasible. When employing acetone, ethanol, dimethylsulfoxide, or dimethylformamide, the organic solvent-extract combination formed a single phase. However, when benzene, ethyl acetate, or n-hexane was added to the extract, the mixture separated into an organic and an aqueous phase and the pigments remained in the aqueous phase. On the other hand, when polyethylene glycol-2,000 (PEG-2000) and sodium citrate were added to the extract, the mixture was separated into three layers, with the majority of the flavonoids migrating to the top layer and 53% of the extract's glucose migrating to the bottom layer. The top layer had significant antioxidant activity, whereas the bottom layer showed no antioxidant activity. The glucose recovery in the bottom layer increased as the molecular weight of PEG increased and the highest recovery (67%) was observed when PEG-8,000 was added. The highest flavonoid separation was observed with PEG-2,000, followed by PEG-8,000 and PEG-400. The flavonoid separation when PEG-2,000 was added resulted in a flavonoid recovery of 48% and 0.2% from the top and bottom layers, respectively. Examining the effect of the separated solution using the agar disc diffusion method on yeast cell growth confirmed that the addition of the extract, the top, and the bottom layer did not inhibit cell growth.

Dimensional Stability of Domestic Small-diameter Timbers Treated with Polyethylene Glycol (PEG(Polyethylene glycol)처리에 의한 국내산 주요 소경재의 치수 안정화에 관한 연구)

  • Kwon, Goo-Jung;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.40-47
    • /
    • 2002
  • This study was carried out to investigate the dimensional stability of three softwoods (Pinus densiflora S. et Z., Pinus koraiensis S. et Z., Larix kaempferi CARR.) and two hardwoods(Quercus mongolica F., Quercus variabilis BL.) treated with polyethylene glycol(PEG). Existence of PEG in wood was examined by an X-ray diffraction method. Shrinkage of the sample woods decreased with increasing concentration of PEG. The dimensional stability of five species had improved highly in thirty percent solutions of PEG with molecular weight 1000~4000, and the dimension of PEG-treated softwoods was more stable than that of PEG-treated hardwoods. Weight gain and bulking effect of the woods treated with PEG increased with increasing concentration of PEG. X-ray diffractograms of Pinus koraiensis wood treated with PEG showed two peaks derived from PEG crystal at 2𝜃 = 19° and 2𝜃 = 23°. However, the diffractograms of Quercus mongolica wood did not present any peaks caused by PEG crystal. From the result of X-ray diffraction, it was revealed that the content of PEG in Pinus koraiensis wood was higher than that in Quercus mongolica wood.

Oxidative Conversion of Bisphenol A with Laccase in the Presence of Polyethylene Glycol (Polyethylene glycol (PEG) 수용액에서 laccase를 이용한 비스페놀A의 처리)

  • Kim, Young-Jin
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.4 s.85
    • /
    • pp.241-245
    • /
    • 2005
  • Laccase catalyzes the oxidation and polymerization of aromatic compounds in the presence of molecular oxygen. Studies were conducted to characterize the use of polyethylene glycol (PEG) as an additive to keep up the enzymatic stability. The enzymatic activities highly remained and bisphenol A (BPA) was rapidly converted in the presence of 5 mg/l of PEC. These effects were accomplished with PEG of molecular weight 3,350. A linear relationship was found between the quantity of BPA to be converted $(10-120\;{\mu}M)$ and the optimum dose of PEC required for greater than $95\%$ conversion. This result suggests that it is the interaction between the PEG and the reaction products. In the optimum dose of PEG, the aeration of reaction mixture neither enhanced the conversion of BPA nor retarded the inactivation of the enzyme.

Polymeric Micelle Using Poly((R)-3-hydroxybutyric acid)/Poly(ethylene glycol) Amphiphilic Block Copolymer for Drug Delivery System (Poly((R)-3-hydroxybutyric acid)/Poly(ethylene glycol) 양친성 블록 공중합체를 이용한 약물전달체용 고분자 미셀)

  • Jeong, Kwan-Ho;Kim, Young-Jin
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.512-518
    • /
    • 2006
  • A biodegradable polymer poly((R) -3-hydroxybutyric acid) (PHB) was conjugated with a hydrophilic polymer poly(ethylene glycol) (PEG) by the ttansesterification reaction to form the amphiphilic block copolymer. PHB with low molecular weight ($3000{\sim}30000$) was appropriated for the drug delivery materials. High molecular weight PHB was hydrolyzed by an acid-catalyst to produce the low molecular weight one. Amphiphilic block copolymer was formed the self-assembled polymeric micelle system in the aqueous solution that the hydrophillic PEG was wraped the hydrophobic PHB. Generally, polymeric micelle forms the small particle between $10{\sim}200nm$. These polymeric micelle systems have been widely used for the drug delivery systems because they were biodegradable, biocompatible, non-toxic and patient compliant. The hydroxyl group of PEG was substituted with carboxyl group which has the reactivity to the ester group of PHB. Amphiphilic block copolymer was conjugated between PHB, and modified PEG at $176^{\circ}C$ which was higher than the melting point of PHB. Transesterification reaction was verified with DSC, FTIR, $^1H-NMR$. In the aqueous solution, critical micelle concentration (CMC) of the mPEG-co-PHB copolymer measured by the fluororescence scanning spectrometer was $5{\times}10^{-5}g/L$. The shape and size of the nanoparticle was taken by dynamic light scattering and atomic force microscopy. The size of the nanoparticle was about 130 nm and the shape was spherical. Our polymeric micelle system can be used as the passive targeting drug delivery system.

Characterization and Release Behavior of Polymersomes of PEG-Poly(fumaric-sebacic acids)-PEG Triblock Copolymer in Aqueous Solution (PEG-Poly(fumaric-sebacic acids)-PEG 삼중 블록 공중합체로 수용액에서 만들어진 폴리머솜의 분석과 방출특성)

  • Pourhosseini, Pouneh S.;Saboury, Ali A.;Najafi, Farhood;Divsalar, Adeleh;Sarbolouki, Mohammad N.
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.294-301
    • /
    • 2013
  • Polymersomes made of biodegradable triblock copolymers based on poly(fumaric acid-co-sebacoyl chloride)/PEG (PEG-co-P(FA/SC)-co-PEG) were prepared and studied in aqueous solutions. TEM confirmed the formation of vesicles in aqueous media. Aggregation behavior of the copolymers was studied by fluorescence spectroscopy of 8-anilino-1-naphthalenesulfonic acid, and the critical aggregation concentration (c.a.c.) of the copolymer was found to be ${\sim}26.2{\mu}M$ indicating desirable stability of the vesicles. Dynamic light scattering revealed that the size of the vesicles was distributed within the range of 170-270 nm. Turbidity measurements confirmed the relative short-term stability of the polymersomes. Carboxyfluorescein, a hydrophilic compound, was simply encapsulated in the vesicles during polymersome preparation. The release of encapsulant from the polymersomes at 25 and $37^{\circ}C$ lasted about 3 weeks, and the rate of release followed a first-order kinetics. The release is speculated to be primarily carried out through diffusion. These results confirm that these polymersomes are promising as controlled-release carriers of various drugs.

Effects of Salts on the Partition of Proteins in Poly (ethylene glycol)-Dextran Aqueous Two Phase System (Poly(ethylene glycol)-dextran 수용액 2상계에서 단백질 분획계수에 미치는 금속염의 효과)

  • Lee, Sam-Pin;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.146-150
    • /
    • 1987
  • The effects of pH and added salts on the partition coefficients of proteins in a polyethylene glycol)-dextran aqueous two-phase system were investigated. The partition coefficients attained the lowest value at the isoelectric point of proteins in an equal volume aqueous two-phase system containing 5% PEG and 9.5% dextran in 5 mM phosphate buffer solution. The coefficients increased dramatically at pH 11; BSA which had highest effective hydrophobicity marked 50-fold increase, while ${\beta}-lactoglobulin$ and ovalbumin which had low hydrophobicity 10-fold increase, respectively. The effect of added salts varied with the pH. The partition coefficient increased by the addition of salt at pH 3.0 but decreased drastically at pH 7.0. The partition coefficient increased in the order of added Li < Na < K at pH 3.0 and decreased in the order of added Li < Na < K at pH 11.0.

  • PDF

Preparation and Characterization of PEG-PLA(PLGA) Micelles for Solubilization of Pioglitazone (Pioglitazone 가용화를 위한 PEG-PLA(PLGA) 고분자 미셀의 제조 및 특성분석)

  • Im, Jeong-Hyuk;Lee, Yong-Kyu;Huh, Kang-Moo
    • Polymer(Korea)
    • /
    • v.32 no.2
    • /
    • pp.143-149
    • /
    • 2008
  • We synthesized PEG-PLA (or PLGA) amphiphilic di-block copolymers, which consist of PEG as biocompatible and hydrophilic block and PLA (or PLGA) as biodegradable and hydrophobic block, by ring opening polymerization of LA in the presence of methoxy PEG as a macroinitiator. The compositions and the molecular weights of the copolymers were controlled by changing the feed ratio of LA (and GA) to PEG initiator. The di-block copolymers could self-assemble in aqueous media to form micellar structure. A hydrophobic model drug, pioglitazone, was loaded into the polymer micelle using solid dispersion and dialysis methods, and the drug-loaded micelles were characterized by AFM, DLS and HPLC measurements. The drug loading capacity and in vitro release studies were performed and evaluated under various conditions. These results indicated that the amphiphilic di-block copolymers of PEG-PLA (or PLGA) could solubilize pioglitazone by solid dispersion method and the drug release was modulated according to micellar chemical compositions.

Synthesis and Solution Properties of Water Soluble Polyester for Metal-Working Fluids (II) (금속가공유용 수용성 폴리에스테르의 합성 및 용액특성(II))

  • Yoon, Yoo-Jung;Kim, Young-Wun;Chung, Keun-Wo;Hwang, Do-Huak
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.834-841
    • /
    • 2005
  • Polyethylene glycol esters (PEG-esters) were synthesized by condensation reaction of dicarboxylic acid such as adipic acid and sebacic acid and several PEGs. The PEG-esters were analyzed by FT-IR, $^1H-NMR$ and HPLC for structure analysis, and by GPC for molecular weight. Through the analysis of surface tension, critical micelle concentration (CMC), aluminum contact angle of water solution containing the PEG-ester, the synthetic PEG-esters are proven to exhibit surfactant properties. The surface tension ranged from 45 to 50 dyn/cm depended on the concentration and structures of the PEG-esters. The surface tension of PEG-esters with sebacic acid moiety and short polyoxyethylene unit resulted in lower value than that of PEG-ester with adipic acid moiety and long polyoxyethylene unit. The CMC of water solution containing 2.5 wt% PEG-ester with sebacic acid moiety estimated at $0.9{\times}10^{-5}{\sim}5.3{\times}10^{-3}mol/L$ depended on the structures of PEG-esters. The CMC of PEG-esters with long polyoxyethlene unit showed a higher value than that of PEG-esters with short polyoxyethylene unit. Meanwhile, the CMC of PEG-esters with adipic acid moiety was not distinct due to their high hydrophilic character. As the results of contact angle and cutting time aginst aluminum, the contact angle ranged from $45^{\circ}$ to $53^{\circ}$ depended on the concentration of PEG-esters. The cutting time of aluminum showed the shortest value at CMC, but the longest value above CMC. This fact indicates that the CMC of PEG-esters is a very important factor in drilling aluminum.

Electrodeposition of Copper on Porous Reticular Cathode (II) - Effect of PEG and MPS on throwing Power- (다공성 그물구조 음극을 이용한 구리 전착에 관한 연구 (II) -유기첨가제 PEG, MPS의 영향 -)

  • Lee Kwan Hyi;Lee Hwa Young;Jeung Won Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.2
    • /
    • pp.41-46
    • /
    • 2001
  • The effect of organic additives such as PEG ind MPS on throwing power have been studied in the fabrication of porous reticular metal by electrodeposition using the mixture of cupric sulfate and sulfuric acid as electrolyte. Both the polarization test and the electrodeposition on the stacked electrodes, mean pore diameter of which was $250{\mu}m$, were performed to illustrate the behavior of throwing power quantitatively. As far as PEG was concerned, it lowered throwing power of electrodeposition on the porous electrode used in this work while the addition of MPS up to 500 ppm in electrolyte enhanced throwing power monotonously. When both MPS and PEG were added in electrolyte, the effect of MPS on throwing power was superior to that of PEG. However, the excess addition of MPS was found to cause the defect in mechanical strength of deposit layer. From the result of SEM observation, it could be concluded that less than 50 ppm of MPS in electrolyte was appropriate to avoid the breakage of deposit layer.

The Effect of Operating Conditions on Cross-Flow Ultrafiltration with using Polyethylene Glycol (Polyethylene Glycol을 이용한 Cross-Flow Ultrafiltration에 있어서 운전조건의 영향)

  • Yoo, Kun-Woo;Seo, Hyung-Joon
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.950-955
    • /
    • 1998
  • The objective of this study was to investigate the effect of running time, operating pressure, feed concentration and circulation rate on the permeation flux and the rejection rate in cross-flow ultrafiltration of polyethylene glycol(PEG) solution of molecular weight($M_w$) 8000 and 20000. The membranes used for this study were MWCO(Molecular Weight Cut-off) of 6 K and 20 K. The experiments were performed at the operating pressures of 7, 14 and 28 psi, the circulation rates of 1000 mL/min and 2000 mL/min, and the feed concentration of 100 mg/L and 1000 mg/L. At a constant pressure, the permeation flux and the observed rejection($R_o$) appeared to be approximately constant within the range of running time, 0~480 min. The permeation flux increased with increasing the operating pressure, and it increased with decreasing the feed concentration and decreasing Mw of PEG at a given pressure. On the other hand, $R_o$ decreased slightly with increasing the operating pressure. However, $R_o$ increased with increasing the feed concentration and increasing of $M_w$ of PEG at a given pressure. The variation in circulation rates did not cause any significant influence on the permeation flux. Increasing of circulation rate caused the increase of $R_o$, and $\alpha$ was increased substantially with the decrease of $M_w$ of PEG. The dimensionless parameter. permeability ratio($\alpha$), which was used to investigate flux-pressure behavior, was increased with the increase in circulation rate and operating presure. The value of $\alpha$ was less than 1 in all cases. The estimated intrinsic rejection(R). which was obtained from mass transfer coefficient, was decreased with the increase of operating pressure. However R increased with the increase of linear velocity of feed and $M_w$ of PEG.

  • PDF