DOI QR코드

DOI QR Code

Separation of Antioxidants and Glucose from Grape Skin Extract Using Polyethylene Glycol and Sodium Citrate

폴리에틸렌글리콜과 구연산 나트륨을 이용하여 포도껍질 추출물에서 항산화물질과 포도당 분리

  • 신은민 (경상국립대학교 화학공학과 및 공학연구원) ;
  • 주영은 (경상국립대학교 화학공학과 및 공학연구원) ;
  • 정수민 (경상국립대학교 화학공학과 및 공학연구원) ;
  • 서재찬 ((주)반석인더스트리즈) ;
  • 김창준 (경상국립대학교 화학공학과 및 공학연구원)
  • Received : 2023.05.11
  • Accepted : 2023.05.26
  • Published : 2023.06.30

Abstract

The purpose of this study is to develop a method for separating antioxidants and sugars from grape skin extract. The extract was first mixed with a variety of organic solvents to investigate whether the separation was feasible. When employing acetone, ethanol, dimethylsulfoxide, or dimethylformamide, the organic solvent-extract combination formed a single phase. However, when benzene, ethyl acetate, or n-hexane was added to the extract, the mixture separated into an organic and an aqueous phase and the pigments remained in the aqueous phase. On the other hand, when polyethylene glycol-2,000 (PEG-2000) and sodium citrate were added to the extract, the mixture was separated into three layers, with the majority of the flavonoids migrating to the top layer and 53% of the extract's glucose migrating to the bottom layer. The top layer had significant antioxidant activity, whereas the bottom layer showed no antioxidant activity. The glucose recovery in the bottom layer increased as the molecular weight of PEG increased and the highest recovery (67%) was observed when PEG-8,000 was added. The highest flavonoid separation was observed with PEG-2,000, followed by PEG-8,000 and PEG-400. The flavonoid separation when PEG-2,000 was added resulted in a flavonoid recovery of 48% and 0.2% from the top and bottom layers, respectively. Examining the effect of the separated solution using the agar disc diffusion method on yeast cell growth confirmed that the addition of the extract, the top, and the bottom layer did not inhibit cell growth.

본 연구의 목적은 포도껍질 추출물에서 항산화 물질과 당을 분리하기 위한 방법을 개발하는 것이다. 먼저, 다양한 유기용매를 추출용매로의 사용 가능 성을 조사하였다. 아세톤, 에탄올, DMSO 또는 DMF 사용 시 유기용매-추출물 혼합물은 단일 상으로 존재하였고 벤젠, 에틸아세테이트, 또는 n-헥산을 추출물에 첨가 시 유기용매 상과 수용액 상으로 분리되었으나 색소물질은 여전히 수용액 상에 잔류하였다. 한편 폴리에틸렌 글리콜-2,000(PEG-2,000)과 구연산 나트륨을 추출물에 첨가 시, 혼합액은 세 개의 층으로 분리되었고 추출물에 존재하는 대부분의 플라보노이드가 상층액으로 이동한 반면 추출물 포도당의 53%가 하층액으로 이동하였다. 하층액에서는 항산화 활성이 관찰되지 않은 반면 상층액은 강한 항산화 활성을 나타내었다. PEG 분자량이 증가함에 따라 하층액의 포도당 회수율이 증가하여 PEG-8,000을 첨가하여 얻은 하층액의 포도당 회수율은 가장 높은 67%였다. 플라보노이드 분리는 PEG-2,000 > PEG-8,000 > PEG-400 순서로 높았다. 그리고 PEG-2,000을 사용하여 얻은 상층액과 하층액의 플라보노이드 회수율은 각각 48과 0.2%였다. 아가 디스크 확산법을 이용하여 분리액이 효모균 생장에 미치는 영향을 조사한 결과, 추출물, 상층액, 및 하층액 첨가가 효모균 생장을 저해하지 않음을 확인하였다.

Keywords

Acknowledgement

본 과제(결과물)는 교육부와 한국연구재단의 재원으로 지원을 받아 수행된 3단계 산학협력 선도대학 육성사업(LINC 3.0)(과제번호: 202207820001)과 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행된 연구(2020R1F1A1054433)의 결과물입니다.

References

  1. Jayaprakasha, G. K., Singh, R. P., and Sakariah, K. K., "Antioxidant Activity of Grape Seed (Vitis vinifera) Extracts on Peroxidation Models in Vitro," Food Chem., 73(3), 285-290 (2001). https://doi.org/10.1016/S0308-8146(00)00298-3
  2. Rockenbach, I. I., Gonzaga, L. V., Rizelio, V. M., Goncalves, A. E. D. S. S., Genovese, M. I., and Fett, R., "Phenolic Compounds and Antioxidant Activity of Seed and Skin Extracts of Red Grape (Vitis Vinifera and Vitis labrusca) Pomace from Brazilian Wine Making," Food Res. Int., 44(4), 897-901 (2011). https://doi.org/10.1016/j.foodres.2011.01.049
  3. Moura, R. S. D., Viana, F. S. C., Souza, M. A. V., Kovary, K., Guedes, D. C., Oliveira, E. P. B., Rubenich, L. M. S., Carvalho, L. C. R. M., Oliveira, R. M., Tano, T., and Correia, M. L. G., "Antihypertensive, Vasodilator and Antioxidant Effects of A Vinifera Grape Skin Extract," J. Pharm. Pharmacol., 54(11), 1515-1520 (2002). https://doi.org/10.1211/002235702153
  4. Li, X., Li, J., Dong, S., Li, Y., Wei, L., Zhao, C., Li, J., Liu, X., and Wang, Y., "Effects of Germination on Tocopherol, Secoisolarlciresinol Diglucoside, Cyanogenic Glycosides and Antioxidant Activities in Flaxseed (Linum usitatissimum L.)," Int. J. Food Sci. Technol., 54(7), 2346-2354 (2019). https://doi.org/10.1111/ijfs.14098
  5. Yun, J. W., Lee, W. S., Kim, M. J., Lu, J. N., Kang, M. H., Kim, H. G., Kim, D. C., Choi, E. J., Choi, J. Y., Kim, H. G., Lee, Y. K., Ryu, C. H., Kim, G. S., Choi, Y. H., Park, O. J., and Shin, S. C., "Characterization of A Profile of The Anthocyanins Isolated from Vitis coignetiae Pulliat and Their Anti-invasive Activity on HT-29 Human Colon Cancer Cells," Food Chem Toxicol., 48(3), 903-909 (2010). https://doi.org/10.1016/j.fct.2009.12.031
  6. Wittenauer, J., Mackle, S., Sussmann, D., Weisz, U. S., and Carle, R., "Inhibitory Effects of Polyphenols from Grape Pomace Extract on Collagenase and Elastase Activity," Fitoterapia., 101, 179-187 (2015). https://doi.org/10.1016/j.fitote.2015.01.005
  7. Gerardi, C., Dʹamico, L., Migoni, D., Santino, A., Salomone, A., Carluccio, M.A., and Giovinazzo, G., "Strategies for Reuse of Skins Separation from Grape Pomace as Ingredient of Functional Beverages," Front. Bioeng. Biotechnol., 8, 645-657 (2020). https://doi.org/10.3389/fbioe.2020.00645
  8. Shin, E. M., Kim, J. Y., Park, S. E., and Kim, C.-J., "Functional Cosmetic Characteristics of Grape Skin Extract," Clean Technol., 27, 306-314 (2021).
  9. Varandas, S., Teixeira, M. J., Marques, J. C., Aguiar, A., Alves, A., and Bastos, M.M.S., "Glucose and Fructose Levels on Grape Skin: Interference in Lobesia botrana Behavior,"Anal. Chim. Acta, 513, 351-355 (2004). https://doi.org/10.1016/j.aca.2003.11.086
  10. Dang, Y.-Y., Zhang, H., and Xiu, Z.-L.,"Microwave-assisted Aqueous Two-phase Extraction of Phenolics from Grape (Vitis vinifera) Seed," J. Chem. Technol. Biotechnol., 89, 1576-1581 (2014). https://doi.org/10.1002/jctb.4241
  11. Chatzilazarou, A., Katsoyannos, E., Laias, O., Dourtoglou, Y., and Tsaknis, J., "Removal of Polyphenols from Wine Sludge Using Cloud Point Extraction," J. Air Waste Manag. Asso., 60, 2313-2324 (2020).
  12. Mai, X., Liu, Y., Tang, X., Wang, L., Lin, Y., Zeng, H., Luo, L., Fan, H., and Li, H., "Sequential Extraction and Enrichment of Flavonoids from Euonymus alatus by Ultrasonic-assisted Polyethylene Glycol-based Extraction Coupled to Temperatureinduced Cloud Point Extraction," Ultrason. Sonochemistry, 66, 105073 (2020).
  13. Huang, Chen, D., Kong, L., Su, M., and Chen, Y., "Aqueous Two-phase Systems (Polyethylene Glycol+Ammonium Sulfate) for Thallium Extraction: Optimization of Extraction Efficiency, Structural Characterization, and Mechnism Exploration," Sep. Purif. Technol., 235, 115740 (2020).
  14. Rodriguez-Salazar, N. and Valle-Guadarrama, S.,"Separation of Phenolic Compounds from Roselle (Hibiscus sabdariffa) Calyces with Aqueous Two-phase Extraction Based on Sodium Citrate and Polyethylene Glycol or Acetone," Sep. Sci. Technol., 55, 2313-2324 (2020). https://doi.org/10.1080/01496395.2019.1634730
  15. Formagio, A. S. N., Volobuff, C. R. F., Santiago, M., Cardoso, C. A. L., Vieira, M. D. C., and Pereira, Z. V., "Evaluation of Antioxidant Activity, Total Flavonoids, Tannins and Phenolic Compounds in Psychotria Leaf Extracts," J. Antioxidants., 3(4), 745-757 (2014). https://doi.org/10.3390/antiox3040745
  16. Jing, L., Ma, H., Fan, P., Gao, R., and Jia, Z., "Antioxidant Potential, Total Phenolic and Total Flavonoid Contents of Rhododendron Anthopogonoides and Its Protective Effect on Hypoxia-induced Injury in PC12 Cells," J. BMC Complementary Medicine and Therapies., 15, 287-299 (2015). https://doi.org/10.1186/s12906-015-0820-3
  17. Kilani, S., Ammar, R. B., Bouhlel, I., Abdelwahed, A., Hayder, N., Mahmoud, A., Ghedira, K., and Chekir-Ghedira, L., "Investigation of Extracts from (Tunisian) Cyperus rotundus as antimutagens and radical scavengers," J. Environ Toxicol Pharmacol., 20, 478-484 (2005).
  18. Choi, C. W., Kim, S. C., Hwang, S. S., Choi, B. K., Ahn, H. J., Lee, M. Y., Park, S. H., and Kim, S. K., "Antioxidant Activity and Free Radical Scavenging Capacity Between Korean Medicinal Plants and Flavonoids by Assay-guided Comparison," J. Plant Sci., 163, 1161-1168 (2002). https://doi.org/10.1016/S0168-9452(02)00332-1
  19. Hunyadi, A., "The Mechanism(s) of Action of Antioxidants: From Scavenging Reactive Oxygen/Nitrogen Species to Redox Signalling and the Generation of Bioactive Secondary Metabolites," Med. Res. Rev., 39, 2505-2533 (2019). https://doi.org/10.1002/med.21592
  20. Boo, H.-O., Hwang, S.-J., Bae, C.-S., Park, S.-H., and Song, W.-S., "Antioxidant Activity According to Each Kind of Natural Plant Pigments," Korean J. Plant. Res, 24, 105-112 (2011). https://doi.org/10.7732/kjpr.2011.24.1.105
  21. Rasouli, H., Farzaei, M. H., and Khodarahmi, R., "Polyphenols and Their Benefits: A review," Int. J. Food Prop., 20, S1700-S1741 (2017).
  22. Mojzer, E. B., Hrncic, M. K., Skerget, M., Knez, Z., and Bren, U., "Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects," Molecules, 21, 901 (2016).
  23. Mangione R., Simoes R., Pereira H., Catarino S., Ricardoda-Silva, J., Miranda, I., and Ferreira-Dias, S., "Potential Use of Grape Stems and Pomaces from Two Red Grapevine Cultivars as Source of Oligosaccharides," Process, 10, 1896 (2022).
  24. Chaves, J. O., De Souza, M. C., Da Silva, L. C., Lachos-Perez, D., Torres-Mayanga, P. C., Machado, A. P. D. F., Forster-Carneiro, T., Vazquez-Espinosa, M., Gonzalez-de-Peredo, Barbero, G. F., and Rostagno, M. A., "Extraction of Flavonoids from Natural Sources Using Modern Techniques," Front. Chem., 8, 507887-507912 (2020). https://doi.org/10.3389/fchem.2020.507887
  25. Mastiani, M., Firoozi, N, Petrozzi, N., Seo, S., and Kim, M., "Polymer-salt Aqueous Two-phase System (ATPS) Microdroplets for Cell Encapsulation," Sci. Rep., 9, 15561-15570 (2019). https://doi.org/10.1038/s41598-019-51958-4
  26. Untea, A. E., Varzaru, I., Vlaicu, P. A., Turcu, R. P., and Panaite, T. M., "Studies on Antioxidant Activities of Grape Pomace Using in Vitro, ex Vivo, and in Vivo Models," J. Food. Meas. Charact., 17, 121-128 (2023). https://doi.org/10.1007/s11694-022-01608-7
  27. Salic, A., Tusek, A., Fabek, D., Rukavina, I., and Zelic, B., "Aqueous Two-Phase Extraction of Polyphenols Using a Microchannel System-Process Optimization and Intensification," Food. Technol. Biotechnol., 49, 495-501 (2011).