• Title/Summary/Keyword: PEDOT(PEDOT)

Search Result 351, Processing Time 0.033 seconds

Simple Patterning Techniques for fabrication of Organic Thin Film Transistors

  • Jo, Sung-Jin;Kim, Woo-Jin;Kim, Chang-Su;Baik, Hong-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1273-1275
    • /
    • 2005
  • The influence of oxygen plasma and octadecyltrichlorosilane (OTS) treatment of $SiO_2$ on the patterning of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT:PSS) is presented. A significant difference in surface energies between plasma treated and OTS treated $SiO_2$ was noted. Such heterogeneous surface energy guides PEDOT:PSS to wet and spread on the wettable region and to dewet and retract from other regions.

  • PDF

Transparent Electrode based on Poly(3,4-ethylenedioxythiophene)

  • Song, Keuk-Ryoul;Min, Hye-Kyoung;Oh, Eung-Ju;Kim, Yong-Bae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.578-580
    • /
    • 2003
  • PEDOT [poly(3,4-ethylenedioxythiophene)] powder soluble in common organic solvent were synthesized by oxidative polymerization of EDOT (3,4-ethylene dioxythiophene) monomer using functional dopant, DEHSNa [sodium di(2-ethylhexyl)sulfosuccinate]. Transparent electrodes were made by spin casting of PEDOT/organic solvents on substrates. The electrode showed the transmittance < 90% in visible region and the surface resistance of> ${\sim}10^3\;ohm/{\square}$, respectively.

  • PDF

Interlayers of polymer tandem solar cells

  • Kim, Tae-Hui;Kim, Gyeong-Gon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.318-318
    • /
    • 2010
  • We present the effect of interlayers of polymer tandem solar cells on their photovoltaic performance. P-type and n-type interlayers are essential for the series-connection of the subcells and enable to form the tandem cell architecture by the solution processing. In this study, we use PEDOT:PSS, nanocrystalline $TiO_2$, and blends of semiconducting polymers and fullerene derivatives as a hole transporting layer, electron transporting layer, and photoactive layers, respectively. We show that photovoltaic performances of polymer tandem solar cells depending on various PEDOT:PSS layers with the different electric conductivity and the various $TiO_2$ layer thickness.

  • PDF

Effect of MoO3 Thickness on the Electrical, Optical, and structural Properties of MoO3 Graded ITO Anodes for PEDOT:PSS-free Organic Solar Cells

  • Lee, Hye-Min;Kim, Seok-Soon;Chung, Kwun-Bum;Kim, Han-Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.478.1-478.1
    • /
    • 2014
  • We investigated $MoO_3$ graded ITO electrodes for organic solar cells (OSCs) without PEDOT:PSS buffer layer. The effect of $MoO_3$ thickness on the electrical, optical, and structural properties of $MoO_3$ graded ITO anodes prepared by RF/DC magnetron co-sputtering system using $MoO_3$ and ITO targets was investigated. At optimized conditions, we obtained $MoO_3$ graded ITO electrodes with a low sheet resistance of 13 Ohm/square, a high optical transmittance of 83% and a work function of 4.92 eV, comparable to conventional ITO films. Due to the existence of $MoO_3$ on the ITO electrodes, OSCs fabricated on $MoO_3$ graded ITO electrode without buffer layer successfully operated. Although OSCs fabricated on ITO anode without buffer layer showed a low power conversion efficiency of 1.249%, OSCs fabricated on $MoO_3$ graded ITO electrode without buffer layer showed a outstanding cell performance of 2.545%. OSCs fabricated on the $MoO_3$ graded ITO electrodes exhibited a fill factor of 61.275%, a short circuit current of 7.439 mA/cm2, an open circuit voltage of 0.554 V, and a power conversion efficiency of 2.545%. Therefore, $MoO_3$ graded ITO electrodes can be considered a promising transparent electrode for cost efficient and reliable OSCs because it could eliminate the use of acidic PEDOT:PSS buffer layer.

  • PDF

Silver Nanowire-based Stretchable and Transparent Electrodes (Silver Nanowire 기반 Stretchable 투명 전극)

  • Lee, Jin-Young;Kim, Su-Yeon;Jeong, Da-Hye;Shin, Dong-Kyun;Yoo, Su-Ho;Seo, Hwa-Il;Park, Jong-Woon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.51-55
    • /
    • 2015
  • We have fabricated silver nanowire (AgNW) films as a stretchable and transparent electrode on polydimethylsiloxane (PDMS) substrates using a spray coater. Inherently, they show poor surface roughness and stretchability. To tackle it, we have employed a conductive polymer, poly (3,4-ethylenedioxythiophene) : Poly(styrene sulfonate) (PEDOT : PSS). PEDTO : PSS solution is mixed with AgNWs or spin-coated on the AgNW film. Compared with AgNW film only, PEDOT : PSS film only, and polymer-mixed AgNW films, the AgNW/polymer bilayer films exhibit much better surface roughness and stretchability. It is found that spray-coating of AgNWs on uncured PDMS and spin-coating of PEDOT : PSS solution on the AgNW films enhance the surface roughness of electrodes. Such a bilayer structure also provides a stable resistance under tensile strain due to the fact that each layer acts as a detour route for carriers. With this structure, we have obtained the peak-to-peak roughness ($R_{pv}$) as low as 76.8nm and a moderate increase of sheet resistance (from $10{\Omega}/{\Box}$ under 0% strain to $30{\Omega}/{\Box}$ under 40% strain).

Enhanced Sensitivity of PEDOT Microtubule Electrode to Hydrogen Peroxide by Treatment with Gold (금 처리를 통한 PEDOT 마이크로튜브 전극의 과산화수소 검출 특성 향상)

  • Park, Jongseo;Son, Yongkeun
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.809-814
    • /
    • 2014
  • An array structure of conducting polymer microtubule was fabricated for an amperometric biosensor. 3,4-Ethylenedioxythiophene (EDOT) was electropolymerized in the microporous template membrane with poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonic acid) (PEDOT/PSS) composite as a binder. The array structure can provide enhanced current collecting capability due to large active surface area compared to the macroscopic area of the electrode itself. For a biosensor application, the array electrode was tested for $H_2O_2$ detection and showed very sluggish electrochemical response to $H_2O_2$. To enhance the detection efficiency to the oxidation of $H_2O_2$, gold was treated on the electrode by two different approaches: sputtering and electrochemical deposition. Gold treatment with either method greatly enhanced the sensitivity of the electrode to $H_2O_2$. So, conducting polymer microtubule array with gold treatment was expected to be a sensitive amperometric biosensor system based on the detection of $H_2O_2$.

Built-in voltage in organic light-emitting diodes from the measurement of modulated photocurrent (변조 광전류 측정법을 이용하여 전극 변화에 따른 유기발광소자의 내장 전압)

  • Lee, Eun-Hye;Yoon, Hee-Myoung;Han, Wone-Keun;Kim, Tae-Wan;Ahn, Joon-Ho;Oh, Hyun-Seok;Jang, Kyung-Uk;Chung, Dong-Hoe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.51-52
    • /
    • 2007
  • Built-in voltage in organic light-emitting diodes was studied using modulated photocurrent technique ambient conditions. From the bias voltage-dependent photocurrent, built-in voltage of the device is determined. The applied bias voltage when the magnitude of modulated photo current is zero corresponds to a built-in voltage. Built-in voltage in the device is generated due to a difference of work function of the anode and cathode. A device was made with a structure of anode/$Alq_3$/cathode to study a built-in voltage. ITO and ITO/PEDOT:PSS were used as an anode, and Al and LiF/AI were used as a cathode. It was found that an incorporation of PEDOT:PSS layer between the ITO and $Alq_3$ increases a built-in voltage by about 0.4V. This is consistent to a difference of a highest occupied energy states of ITO and PEDOT:PSS. This implies that a use of PEDOT:PSS layer in anode improves the efficiency of the device because of a lowering of anode barrier height. With a use bilayer cathode system LiF/Al, it was found that the built-in voltage increases as the LiF layer thickness increases in the thickness range of 0~1nm. For 1nm thick LiF layer, there is a lowering of electron barrier by about 0.2eV with respect to an Al-only device. It indicates that a very thin alkaline metal compound LiF lowers an electron barrier height.

  • PDF

Fabrication of PEDOT:PSS/AgNW-based Electrically Conductive Smart Textiles Using the Screen Printing Method and its Application to Signal Transmission Lines (스크린 프린팅을 이용한 PEDOT:PSS/AgNW 기반 전기전도성 스마트 텍스타일의 제조 및 신호전달선으로의 적용)

  • Kang, Heeeun;Lee, Eugene;Cho, Gilsoo
    • Fashion & Textile Research Journal
    • /
    • v.23 no.4
    • /
    • pp.527-535
    • /
    • 2021
  • In this study, electroconductive textiles were developed by screen-printing technology using a complex solution of PEDOT:PSS/AgNW on a polylactic acid nanofiber web. A performance evaluation was then conducted to utilize this electroconductive textile as a signal transmission line. To obtain highly conductive electroconductive textiles, this study sought to determine the optimal mixing ratio of PEDOT:PSS/AgNW. Sheet resistance was measured to evaluate the electrical properties of electroconductive textiles, Finite element-scanning electron microscopy images were then used to examine surface properties, and Fourier transform-infrared analysis was performed to evaluate chemical properties. The signal waveform characteristics of the electroconductive textile were observed using a signal generator and an oscilloscope. Radio-frequency characteristics were then evaluated to confirm frequency range, and bending tests were conducted to evaluate durability. The signal transmission lines produced in this study had a sheet resistance value of 3.30 ?/sq, and signal transmission performance was evaluated to observe that the input value of the voltage was nearly identical to the output value. In addition, S21 analysis confirmed that it was available in the frequency domain up to 35 MHz. The performances of the transmission lines were maintained after 100, 200, 500, and 1,000 repeated bending tests, and sufficient durability was confirmed.

Study on Poly(3,4-ethylenedioxythiophene) Thin Film Vapour Phase-Polymerized with Iron(III)Tosylate on High Quality 3-Aminopropyltriethoxysilane Self-Assembled Monolayer

  • Choi, Sangil;Kim, Wondae;Cho, Sung Jun;Kim, Sungsoo
    • Journal of Integrative Natural Science
    • /
    • v.5 no.4
    • /
    • pp.237-240
    • /
    • 2012
  • In this study, PEDOT thin films polymerized with Iron(III)tosylate ($Fe(PTS)_3$) and grown on atomically smooth and highly dense 3-aminopropyltriethoxysilane self-assembled monolayer (APS-SAM) surfaces by VPP method have been investigated. PEDOT thin films were synthesized on APS self-assembled $SiO_2$ wafer surface at two different concentrations (20 wt% and 40 wt%) and growth time (3 and 30 minutes), and then their sheet resistance were measured and compared. PEDOT thin films grown with 20 wt% $Fe(PTS)_3$ oxidant are highly conductive when compared with the film grown with 40 wt% $Fe(PTS)_3$, as ascertained by the measured sheet resistance values down to 0.06 ${\Omega}/cm$. It clearly suggests that 20 wt% is more effective oxidant concentration for VPP than 40 wt% even though the film grown with 40 wt% oxidant has better quality than the film with 20 wt% $Fe(PTS)_3$ does.