• Title/Summary/Keyword: PECVD oxide

Search Result 139, Processing Time 0.024 seconds

Structure and Property Analysis of Nanoporous Low Dielectric Constant SiCOH Thin Films

  • Heo, Gyu-Yong;Lee, Mun-Ho;Lee, Si-U;Park, Yeong-Hui
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.167-169
    • /
    • 2009
  • We have carried out quantitative structure and property analysis of the nanoporous structures of low dielectric constant (low-k) carbon-doped silicon oxide (SiCOH) films, which were deposited with plasma enhanced chemical vapor deposition (PECVD) using vinyltrimethylsilane (VTMS), divinyldimethylsilane (DVDMS), and tetravinylsilane (TVS) as precursor and oxygen as an oxidant gas. We found that the SiCOH film using VTMS only showed well defined spherical nanopores within the film after thermal annealing at $450^{\circ}C$ for 4 h. The average pore radius of the generated nanopores within VTMS SiCOH film was 1.21 nm with narrow size distribution of 0.2. It was noted that thermally labile $C_{x}H_{y}$ phase and Si-$CH_3$ was removed to make nanopore within the film by thermal annealing. Consequently, this induced that decrease of average electron density from 387 to $321\;nm^{-3}$ with increasing annealing temperature up to $450^{\circ}C$ and taking a longer annealing time up to 4 h. However, the other SiCOH films showed featureless scattering profiles irrespective of annealing conditions and the decreases of electron density were smaller than VTMS SiCOH film. Because, with more vinyl groups are introduced in original precursor molecule, films contain more organic phase with less volatile characteristic due to the crosslinking of vinyl groups. Collectively, the presenting findings show that the organosilane containing vinyl group was quite effective to deposit SiCOH/$C_{x}H_{y}$ dual phase films, and post annealing has an important role on generation of pores with the SiCOH film.

  • PDF

A Study on Solid-Phase Epitaxy Emitter in Silicon Solar Cells (고상 성장법을 이용한 실리콘 태양전지 에미터 형성 연구)

  • Kim, Hyunho;Ji, Kwang-Sun;Bae, Soohyun;Lee, Kyung Dong;Kim, Seongtak;Park, Hyomin;Lee, Heon-Min;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.80-84
    • /
    • 2015
  • We suggest new emitter formation method using solid-phase epitaxy (SPE); solid-phase epitaxy emitter (SEE). This method expect simplification and cost reduction of process compared with furnace process (POCl3 or BBr3). The solid-phase epitaxy emitter (SEE) deposited a-Si:H layer by radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) on substrate (c-Si), then thin layer growth solid-phase epitaxy (SPE) using rapid thermal process (RTP). This is possible in various emitter profile formation through dopant gas ($PH_3$) control at deposited a-Si:H layer. We fabricated solar cell to apply solid-phase epitaxy emitter (SEE). Its performance have an effect on crystallinity of phase transition layer (a-Si to c-Si). We confirmed crystallinity of this with a-Si:H layer thickness and annealing temperature by using raman spectroscopy, spectroscopic ellipsometry and transmission electron microscope. The crystallinity is excellent as the thickness of a-Si layer is thin (~50 nm) and annealing temperature is high (<$900^{\circ}C$). We fabricated a 16.7% solid-phase epitaxy emitter (SEE) cell. We anticipate its performance improvement applying thin tunnel oxide (<2nm).

The Effects of Substrate Temperature on Properties of Carbon Nanotube Films Deposited by RF Plasma CVD (RF Plasma CVD법에 의해 증착된 카본나노튜브(CNT)의 특성에 대한 기판 온도의 영향)

  • Kim, Dong-Sun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.50-55
    • /
    • 2008
  • Carbon Nanotube (CNT) films were deposited with varying deposition temperature by RF plasma CVD on Fe catalysts deposited onto $SiO_2$ films grown thermally on the silicon wafer using $C_2H_2$ and $H_2$ gases. The Fe catalysts on silicon oxide film were made by RF magnetron sputtering. The grounded grid mesh cover on the substrate holder was used for depositing CNT thin films with high purity. The surface morphologies and chemical structure of deposited CNT films were characterized using SEM, Raman, XPS and TEM. It was observed that deposited CNTs films were carbon fiber type having Bamboo-like multiwall structure and CNT film grown at $600^{\circ}C$ was more dense than that at $550^{\circ}C$, but become less dense at $650^{\circ}C$.

Hole Selective Contacts: A Brief Overview

  • Sanyal, Simpy;Dutta, Subhajit;Ju, Minkyu;Mallem, Kumar;Panchanan, Swagata;Cho, Eun-chel;Cho, Young Hyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.7 no.1
    • /
    • pp.9-14
    • /
    • 2019
  • Carrier selective solar cell structure has allured curiosity of photovoltaic researchers due to the use of wide band gap transition metal oxide (TMO). Distinctive p/n-type character, broad range of work functions (2 to 7 eV) and risk free fabrication of TMO has evolved new concept of heterojunction intrinsic thin layer (HIT) solar cell employing carrier selective layers such as $MoO_x$, $WO_x$, $V_2O_5$ and $TiO_2$ replacing the doped a-Si layers on either front side or back side. The p/n-doped hydrogenated amorphous silicon (a-Si:H) layers are deposited by Plasma-Enhanced Chemical Vapor Deposition (PECVD), which includes the flammable and toxic boron/phosphorous gas precursors. Due to this, carrier selective TMO is gaining popularity as analternative risk-free material in place of conventional a-Si:H. In this work hole selective materials such as $MoO_x$, $WO_x$ and $V_2O_5$has been investigated. Recently $MoO_x$, $WO_x$ & $V_2O_5$ hetero-structures showed conversion efficiency of 22.5%, 12.6% & 15.7% respectively at temperature below $200^{\circ}C$. In this work a concise review on few important aspects of the hole selective material solar cell such as historical developments, device structure, fabrication, factors effecting cell performance and dependency on temperature has been reported.

Study on the fabrication of a polycrystalline silicon (pc-Si) seed layer for the pc-Si lamelliform solar cell (다결정 실리콘 박형 태양전지를 위한 다결정 실리콘 씨앗층 제조 연구)

  • Jeong, Hyejeong;Oh, Kwang H.;Lee, Jong Ho;Boo, Seongjae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.75.2-75.2
    • /
    • 2010
  • We studied the fabrication of polycrystalline silicon (pc-Si) films as seed layers for application of pc-Si thin film solar cells, in which amorphous silicon (a-Si) films in a structure of glass/Al/$Al_2O_3$/a-Si are crystallized by the aluminum-induced layer exchange (ALILE) process. The properties of pc-Si films formed by the ALILE process are strongly determined by the oxide layer as well as the various process parameters like annealing temperature, time, etc. In this study, the effects of the oxide film thickness on the crystallization of a-Si in the ALILE process, where the thickness of $Al_2O_3$ layer was varied from 4 to 50 nm. For preparation of the experimental film structure, aluminum (~300 nm thickness) and a-Si (~300 nm thickness) layers were deposited using DC sputtering and PECVD method, respectively, and $Al_2O_3$ layer with the various thicknesses by RF sputtering. The crystallization of a-Si was then carried out by the thermal annealing process using a furnace with the in-situ microscope. The characteristics of the produced pc-Si films were analyzed by optical microscope (OM), scanning electron microscope (SEM), Raman spectrometer, and X-ray diffractometer (XRD). As results, the crystallinity was exponentially decayed with the increase of $Al_2O_3$ thickness and the grain size showed the similar tendency. The maximum pc-Si grain size fabricated by ALILE process was about $45{\mu}m$ at the $Al_2O_3$ layer thickness of 4 nm. The preferential crystal orientation was <111> and more dominant with the thinner $Al_2O_3$ layer. In summary, we obtained a pc-Si film not only with ${\sim}45{\mu}m$ grain size but also with the crystallinity of about 75% at 4 nm $Al_2O_3$ layer thickness by ALILE process with the structure of a glass/Al/$Al_2O_3$/a-Si.

  • PDF

InSb 적외선 소자제작을 위한 $SiO_2$, $Si_3N_4$증착 온도에 따른 계면 특성 연구

  • Kim, Su-Jin;Park, Se-Hun;Lee, Jae-Yeol;Seok, Cheol-Gyun;Park, Jin-Seop;Yun, Ui-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.57-58
    • /
    • 2011
  • III-V족 화합물 반도체의 일종인 InSb는 77 K에서 0.23 eV의 작은 밴드 갭을 가지며 높은 전하 이동도를 가지고 있기 때문에 대기권에서 전자파 흡수가 일어나지 않는 3~5 ${\mu}m$범위의 장파장 적외선 감지가 가능하여 중적외선 감지 소자로 이용되고 있다. 하지만 InSb는 밴드 갭이 매우 작기 때문에, 소자 제작시 누설전류에 의한 소자 특성의 저하가 문제시 되고 있다. 또한 다른 화합물 반도체에 비해 녹는점이 낮고, 휘발성이 강한 5족 원소인 Sb의 승화로 기판의 화학양론적 조성비(stoichiometry)가 변하기 쉬워, 계면특성 저하의 원인이 된다. 따라서 우수한 특성을 가지는 적외선 소자의 구현을 위해서, 저온에서 계면 특성이 우수한 고품질의 절연막 증착 연구가 필수적이다. 본 연구에서는 InSb 기판 위에 $SiO_2$, $Si_3N_4$의 절연막 형성시 증착온도의 변화에 따른 계면 트랩 밀도를 분석하였다. $SiO_2$, $Si_3N_4$ 절연막은 플라즈마 화학 기상 증착법(PECVD)을 이용하여 n형 InSb 기판 위에 증착하였으며, 증착온도를 $120^{\circ}C$부터 $240^{\circ}C$까지 변화시켰다. Metal oxide semiconductor(MOS) 구조 제작을 통하여, 커패시턴스-전압(C-V)분석을 진행하였으며, 절연막과 InSb 사이의 계면 트랩 밀도를 Terman method를 이용하여 계산하였다[1]. 또한, $SiO_2$$Si_3N_4$의 XPS 분석과 TOF-SIMS 분석을 통하여 계면 트랩 밀도의 원인을 밝혀 보았다. $120{\sim}240^{\circ}C$ 온도 범위에서 계면 트랩 밀도는 $Si_3N_4$의 경우 $2.4{\sim}4.9{\times}10^{12}cm^{-2}eV^{-1}$, $SiO_2$의 경우 $7.1{\sim}7.3{\times}10^{11}cm^{-2}eV^{-1}$ 값을 나타냈고, 두 절연막 모두 증착 온도가 증가할수록 계면 트랩 밀도가 증가하는 경향을 보였다. 그러나 모든 샘플에서 $Si_3N_4$의 경우, flat band voltage가 음의 전압으로 이동한 반면, $SiO_2$의 경우, 양의 전압으로 이동하는 것을 확인할 수 있었다. 계면 트랩 밀도 증가의 원인을 확인하기 위해서, oxide를 $120^{\circ}C$, $240^{\circ}C$에서 증착시킨 샘플을 XPS 분석을 통하여 깊이에 따른 성분분석을 하였고, 그 결과, $240^{\circ}C$에서 증착된 샘플에서 계면에서 $In_2O_3$$Sb_2O_3$ 피크의 증가를 확인하였다. 이는 계면에서 oxide양이 증가함을 의미하며, 이렇게 생성된 oxide는 계면 트랩으로 작용하므로, 계면 특성을 저하시키는 원인으로 작용함을 알 수 있었다. Nitride 절연막을 증착시킨 샘플은 TOF-SIMS 분석을 통해, 계면에서의 성분 분석을 하였고, 그 결과, $240^{\circ}C$에서 증착된 샘플에서 In-N, Sb-N, Si-N 결합의 감소를 확인하였다. 이렇게 분해된 결합들의 dangling 결합이 늘어 계면 트랩으로 작용하므로, 계면 특성을 저하시키는 원인으로 작용함을 알 수 있었다. 최종적으로, 소자특성을 확인 하기 위하여 계면 트랩 밀도가 가장 낮게 측정된 $200^{\circ}C$ 조건에서 $SiO_2$ 절연막을 증착하여 InSb 적외선 소자를 제작하였다. 전류-전압(I-V) 분석 결과 -0.1 V에서 16 nA의 누설 전류 값을 보였으며, $2.6{\times}10^3{\Omega}cm^2$의 RoA(zero bias resistance area)를 얻을 수 있었다. 절연막 증착조건의 최적화를 통하여, InSb 적외선 소자의 특성이 개선됨을 확인할 수 있었다.

  • PDF

Characteristics of metal-induced crystallization (MIC) through a micron-sized hole in a glass/Al/$SiO_2$/a-Si structure (Glass/Al/$SiO_2$/a-Si 구조에서 마이크론 크기의 구멍을 통한 금속유도 실리콘 결정화 특성)

  • Oh, Kwang H.;Jeong, Hyejeong;Chi, Eun-Ok;Kim, Ji Chan;Boo, Seongjae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.59.1-59.1
    • /
    • 2010
  • Aluminum-induced crystallization (AIC) of amorphous silicon (a-Si) is studied with the structure of a glass/Al/$SiO_2$/a-Si, in which the $SiO_2$ layer has micron-sized laser holes in the stack. An oxide layer between aluminum and a-Si thin films plays a significant role in the metal-induced crystallization (MIC) process determining the properties such as grain size and preferential orientation. In our case, the crystallization of a-Si is carried out only through the key hole because the $SiO_2$ layer is substantially thick enough to prevent a-Si from contacting aluminum. The crystal growth is successfully realized toward the only vertical direction, resulting a crystalline silicon grain with a size of $3{\sim}4{\mu}m$ under the hole. Lateral growth seems to be not occurred. For the AIC experiment, the glass/Al/$SiO_2$/a-Si stacks were prepared where an Al layer was deposited on glass substrate by DC sputter, $SiO_2$ and a-Si films by PECVD method, respectively. Prior to the a-Si deposition, a $30{\times}30$ micron-sized hole array with a diameter of $1{\sim}2{\mu}m$ was fabricated utilizing the femtosecond laser pulses to induce the AIC process through the key holes and the prepared workpieces were annealed in a thermal chamber for 2 hours. After heat treatment, the surface morphology, grain size, and crystal orientation of the polycrystalline silicon (pc-Si) film were evaluated by scanning electron microscope, transmission electron microscope, and energy dispersive spectrometer. In conclusion, we observed that the vertical crystal growth was occurred in the case of the crystallization of a-Si with aluminum by the MIC process in a small area. The pc-Si grain grew under the key hole up to a size of $3{\sim}4{\mu}m$ with the workpiece.

  • PDF

A Study on the Properties of $Al_2$ $O_3$ and $Al_2$ $O_3$/( $Ti_{0.5}$ $Al_{0.5}$)N Coatings Produced by Plasma Enhanced Chemical Vapor Deposition (플라즈마 화학 증착법에 의한 $Al_2$ $O_3$ 단층피막과 $Al_2$ $O_3$/( $Ti_{0.5}$ $Al_{0.5}$)N 이중피막의 제조 및 특성에 관한 연구)

  • 손경석;이승훈;이동각;임주완;이후철;이정중
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.2
    • /
    • pp.105-114
    • /
    • 2001
  • $Al_2$$O_3$ coatings were deposited on M2 high speed steels by the plasma enhanced chemical vapor deposition (PECVD) process, using a gas mixture of AlC1$_3$, $H_2$, $CO_2$ and Ar $Al_2$$O_3$ coatings had interference color and showed amorphous phase. $A1_2$X$A1_3$/($Ti_{0.5}$ /$Al_{0.5}$ )N double layer coatings were produced in the sequence of substrate $NH_3$ plasma pretreatment, ($Ti_{0.5}$$Al_{0.5}$)N depoition process, $Al_2$$O_3$ deposition process. $Al_2$ $O_3$/( $Ti_{0.5}$A $l_{0.5}$)N double layer coatings showed NaCl structure in ( $Ti_{0.5}$A $l_{0.5}$)N layer and amorphous phase in A1$_2$ $O_3$ layer. It was shown that $Al_2$ $O_3$ columns continuously grew onto ( $Ti_{0.5}$A $l_{0.5}$)N columns. ( $Ti_{0.5}$A $l_{0.5}$)N single coating and $Al_2$ $O_3$/( $Ti_{0.5}$A $l_{0.5}$)N double layer coating were oxidized at $700^{\circ}C$, 80$0^{\circ}C$, 90$0^{\circ}C$ for 1hr, 3hr in atmosphere. At 80$0^{\circ}C$, single layer coatings were oxidized, which were examined substrate oxide particle. But $Al_2$ $O_3$/ ( $Ti_{0.5}$A $l_{0.5}$)N double layer coatings maintained the asdeposited state. Therefore, $Al_2$ $O_3$/ ( $Ti_{0.5}$A $l_{0.5}$)N double layer coatings have moreexcellent oxidation resistance than ( $Ti_{0.5}$A $l_{0.5}$)N single layer coatings.X> 0.5/)N single layer coatings.s.

  • PDF

Electrical Properties for Enhanced Band Offset and Tunneling with a-SiOx:H/a-si Structure (a-SiOx:H/c-Si 구조를 통한 향상된 밴드 오프셋과 터널링에 대한 전기적 특성 고찰)

  • Kim, Hongrae;Pham, Duy phong;Oh, Donghyun;Park, Somin;Rabelo, Matheus;Kim, Youngkuk;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.4
    • /
    • pp.251-255
    • /
    • 2021
  • a-Si is commonly considered as a primary candidate for the formation of passivation layer in heterojunction (HIT) solar cells. However, there are some problems when using this material such as significant losses due to recombination and parasitic absorption. To reduce these problems, a wide bandgap material is needed. A wide bandgap has a positive influence on effective transmittance, reduction of the parasitic absorption, and prevention of unnecessary epitaxial growth. In this paper, the adoption of a-SiOx:H as the intrinsic layer was discussed. To increase lifetime and conductivity, oxygen concentration control is crucial because it is correlated with the thickness, bonding defect, interface density (Dit), and band offset. A thick oxygen-rich layer causes the lifetime and the implied open-circuit voltage to drop. Furthermore the thicker the layer gets, the more free hydrogen atoms are etched in thin films, which worsens the passivation quality and the efficiency of solar cells. Previous studies revealed that the lifetime and the implied voltage decreased when the a-SiOx thickness went beyond around 9 nm. In addition to this, oxygen acted as a defect in the intrinsic layer. The Dit increased up to an oxygen rate on the order of 8%. Beyond 8%, the Dit was constant. By controlling the oxygen concentration properly and achieving a thin layer, high-efficiency HIT solar cells can be fabricated.