• Title/Summary/Keyword: PE pipes

Search Result 47, Processing Time 0.022 seconds

Behavior of Underground Flexible Pipes Subject to Vehicle Load (ll)-Based on Field Tests- (차량하중을 받는 지중연성관의 거동특성 (ll)-실증실험을 중심으로-)

  • 이대수;상현규;김경열;홍성연
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.49-58
    • /
    • 2003
  • Underground flexible pipes for electric cables are subject to external loads and surrounding soil pressure. Particularly, strain of flexible pipes is of great concern in terms of safety and maintenance for electric cables. In this paper, stress and strain of flexible pipes with various installation depth are compared using traditional formula, FEM analysis, model soil box test and field test. from the findings of various analyses, considering the strain criteria-maximum 3.5%, it is suggested that flexible pipes can be buried at the depth of 80cm without additional soil improvement.

A Study on Performance Analysis of a Fish Cage using Air Chamber Structure (대형공기구조물을 이용한 가두리양식장의 성능해석)

  • Choi, Jin;Kim, Soo-Young;Kim, Duk-Eun;Jeong, Seong-Jae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.1 s.145
    • /
    • pp.119-127
    • /
    • 2006
  • Recently as a result of excessive development. pollution of the coast and occurrence of a typhoon year after year, fishermen suffer heavy losses in fish farming which is the one of the most important earnings ways. For solution of these problems, we need to go out into the open sea from an inland sea. In this study we suggested new fish cage which makes up for the structural weakness of existing wooden fish cages. It can farm fishes in the open sea of high wave and current with no damages from a typhoon. We substituted TPU(Thermoplastic Polyurethane) air chamber for existing styrofoam flotage which was harmful to the environment and impermanent. We used PE(Polyethylene) pipes for the maintenance of formation and the prevention of buoyancy loss caused by a breakdown of flotage. PE b rackets were designed to combine PE pipes with TPU air-chamber flotage. It has good strength and light weight. As a result of modeling test. it is great in buoyancy, strength and flexibility against wave. Because it can control buoyancy arbitrarily, moreover, we expect that it will reduce damages of a red water by applying it as semi-submerged fish cages.

Reinforcement of Polyethylene Pipes with Modified Carbon Microfibers

  • Petukhova, E.S.;Savvinova, M.E.;Krasnikova, I.V.;Mishakov, I.V.;Okhlopkova, A.A.;Jeong, Dae-Yong;Cho, Jin-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.3
    • /
    • pp.177-180
    • /
    • 2016
  • The surface properties of carbon microfibers (CMFs) are modified by chemical deposition of carbon nanofibers via the so-called ethylene processing. CMFs and the modified CMFs (MCMFs) are investigated as reinforcement additives to fabricate polyethylene (PE) composites with enhanced mechanical characteristics. The mechanical properties of the PE-MCMF composites are found to be better and favorable for applications under harsh climatic conditions such as those in Siberia. Improved adhesive interaction between MCMFs and PE is responsible for these enhanced mechanical properties.

A study on the basic experiment of performance criteria for application of pipe bursting method in actual field (Pipe Bursting 공법의 적용성 검토를 위한 주요 성능평가 항목의 기초실험연구)

  • Park, Sangbong;Kim, Kibum;Seo, Jeewon;Park, Sanghyuk;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.5
    • /
    • pp.435-443
    • /
    • 2018
  • Most of aged water supply pipes have been replaced by the open cut method. However, this method has some limitations because water pipes, in many cases, are buried together with other underground facilities or are buried in the middle of high-traffic roads or in narrow alleyways where boring machines cannot be used. This research developed a pipe bursting device for small diameter pipes that enables pipe replacement without excavating the ground, by the busting of existing buried pipes followed by the traction and insertion of new pipes. As a results of examining the field applicability of the developed device, PE pipes and PVC pipes required the tractive force of 413.65~665.69 kgf and 457.43~791.35 kgf respectively, plus an additional 30 % tractive force per elbow. The proper number of bursting head was demonstrated that the connection of more than 2 heads could secure a stable bending radius of 15D. The developed device can be improved through field experiments involving various pipe types and pipe diameters, as well as presence/absence of elbow, so as to be utilized regardless of diverse variables according to the conditions of the soils surrounding existing pipes.

AE characteristic of PE pipe under tensile test (PE 배관의 인장시험 동안 발생한 AE 특성)

  • Jeong, Jeong-Hwan;Nam, Ki-Woo;Ahn, Seok-Hwan;Park, In-Duck
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.130-133
    • /
    • 2002
  • Polyethylene pressure pipe has been used with a gas pipe material because of workability and stability etc.. Researches on characteristics of polyethylene pressure pipe are carried out, but there are rare. In this study, the tensile test was performed on polyethylene pipe. From the tensile test, AE signals were detected and estimated in real time. Also, the time-frequency analysis of AE signals was analyzed. From test results, PE pipes were displayed typical stress-strain curves oj semi-crystalline polymer. As result analyzed AE signals, could divide stress-strain curves could be divided into four stages. In the elastic region, signals were not detected. Low amplitude distributions of 30-35dB appeared after yielding, and high amplitude distributions of 30-60dB appeared with increased extension. From the time-frequency analysis of AE signals, the frequency band of 100kHz appeared mainly. Also, the frequency band of 300kHz appeared before the necking phenomenon spreads into the whole region, and the frequency band of 500kHz appeared on extension earlier.

  • PDF

Study for Field Inspection of Phase-Array Ultrasonic for Electro-fusion Joints of Polyethylene Gas Pipes (폴리에틸렌 가스배관 전기융착부 위상배열초음파검사 현장사례 연구)

  • Kil Seong-Hee;Kwon Jeong-Rock;Park Kyo-Shik
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.2 s.31
    • /
    • pp.61-67
    • /
    • 2006
  • We developed the ultrasonic phased array technique for obtaining ultrasonic images of electrofusion joints of polyethylene piping. And we inspected 4 cases at fields with this technique. First case is for the 300 mm diameter polyethylene electrofusion joint by using 3.5 MHz phased array sensor, second is for the 350 mm diameter saddle electrofusion joint, third is for the 400 mm diameter electrofusion joints and the last one is for the 400 mm diameter piping joints which will be used at 300 kPa suppling pressure.

  • PDF

Study for Non-Destructive Testing of Polyethylene Electrofusion Joints - Ultrasonic Imaging test (폴리에틸렌 배관의 전기융착부 비파괴검사기술에 관한 연구)

  • Kil Seong Hee;Kwon Jeong Rock
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.3 s.24
    • /
    • pp.31-36
    • /
    • 2004
  • Electrofusion(EF) joints have been widely used as they are easy to fuse and suitable for high-quality joints for polyethylene(PE) pipes. This paper studies the cause of defects and classifies 5 types of defects. The defect detection technique for electrofusion joints of polyethylene piping is utilized by the ultrasonic phased array technique to obtain ultrasonic images of electrofusion joints. Test sample joints have been designed and fabricated using artificial defects which were made using paper. Finally, we studied the condition of electrofusion in the field and analyzed the main causes of defects. And we classified the defect types as local lack of fusion, sand inclusion, voids or air inclusion, short stab, excess penetration or excess bead.

  • PDF

A Study on Selection of Pipe Materials Considering EWT (EWT를 고려한 지중열교환기 파이프 선정에 관한 연구)

  • Ryu, Hyung-Kyou;Chung, Min-Ho;Lee, Byung-Seok;Choi, Hyun-Jun;Choi, Hang-Seok
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.10 no.2
    • /
    • pp.13-18
    • /
    • 2014
  • This paper proposes an optimum pipe material (PVC vs. PE) design & selection for open loop ground heat exchangers. Heat exchange efficiency and/or workability, and the need for trench insulation were investigated by comparing EWT (cooling mode) of each system. CFD simulations for the PVC and PE pipe with the same inner diameter show similar EWT. This is because the PVC pipe has a small thickness but a low thermal conductivity as compared to the PE pipe, and thus these two properties tend to offset each other. However, a hypothetically insulated pipe led to a meaningful drop of EWT. This means pipe insulation is of importance in performance of ground heat exchangers. From analyzing climate data and system operation, it is not advantageous to insulate trench pipes due to construction difficulties and ground temperature characteristics that are seasonally varied.

An Experimental Study on Piping Feasibility of PE Compound Pipe for Fire Protection Service (PE 이종강관의 소방용 배관 적용성에 관한 실험적 연구)

  • Park, Jeong-Hwa;Oh, Cheon-Young;Kwark, Ji-Heon;Son, Bong-Sei
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.55-61
    • /
    • 2016
  • In this study, to determine whether it is possible to apply Polyethylene (PE) compound pipe, which was developed to solve the problem caused by the corrosion of the fire protection piping currently in usein water based fire extinguishing systems, we performed an actual mockup fire test. Since no test standard was available related to the developed compound pipe, we compared and analyzed domestic and international technical materials and test standards and selected suitable fire test standards to evaluate the performance of the PE compound pipe. we applied two fire test standards to the PE compound pipe, viz. those for CPVC and metallic pipes, and conducted a total of 6 experiments to evaluate its performance. According to the results of the first and second fire tests based on the test standard for the CPVC pipe, neither the fitting nor the piping was damaged or deformed and no leakage was observed in the pressure test, which was performed for 5 minutes. For the fire test based on the metallic pipe test standard, a total of 4 experiments were conducted. The first two experiments were conducted to simulate the wet piping system. In the results of this fire test, neither leakage nor rupture was observed from the PE compound pipe and no damage was caused, such as the secession of the PE material. However, in the next two experiments, which simulated the dry system, the PE compound pipe suffered damage and rupture, including deformation before the fire fighting water was discharged. Therefore, we found that the piping performance of the PE compound pipe did not undergo any deterioration, including fusion, deformation, or damage, in the wet piping system simulated fire test.

Heat Exchanger Design of a Heat Pump System Using the Heated Effluent of Thermal Power Generation Plant as a Heat Source for Greenhouse Heating (화력발전소의 온배수를 열원으로 이용하는 시설원예 난방용 히트펌프 시스템의 열교환기 설계기준 설정)

  • Ryou, Young Sun;Kang, Youn Ku;Jang, Jae Kyung;Kim, Young Hwa;Kim, Jong Goo;Kang, Geum Chun
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.372-378
    • /
    • 2012
  • This study was carried out in order to determine the optimum length of a roll type PE pipe heat exchanger employed in the water-to-water heat pump system using the waste heat of the heated effluent flowed out from thermal power generation plants as a heat source. And the heat pump system of 30 RT for an experimental test was designed and manufactured. And also PE pipes were employed to recover the waste heat from the heated effluent. The inside diameter of PE pipe heat exchanger was 20 mm, the thickness was 2 mm and the diameter of a roll was 1,000 mm. And from the results of this study, we found that the optimum length of PE pipe heat exchanger was 75 m per the heat pump capacity of 1.0 RT (3.51 kW) and then the heating COP of heat pump system was 3.8.