• Title/Summary/Keyword: PDP(plasma display panel)

Search Result 564, Processing Time 0.025 seconds

Physical Mechanism of Light emission from Discharge Cells in the Plasma Display Panel (PDP 방전 셀에서 빛이 방출되는 물리적 메커니즘)

  • Uhm, Han-S.;Choi, Eun-H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.6
    • /
    • pp.556-562
    • /
    • 2006
  • The plasma display panel is made of many small discharge cells, which consist of a discharge space between the cathode and anode. An electrical discharge occurs in the discharge space filled by neon and xenon gases. The electron temperature is determined from the sparking criterion, which theoretically estimates the electrical breakdown voltage in terms of the xenon mole fraction. The plasma in the cell emits vacuum ultraviolet lights of 147 nm and 173 nm, exciting fluorescent material and converting VUV lights to visible lights. The physical mechanisms of all these processes have been theoretically modeled and experimentally measured. The theory and experimental data agree reasonably well. However, new materials and better configuration of cells are needed to enhance discharge and light emission efficiency and to improve the PDP performance.

Gray Scale Plasma Display Panel with a New High-Speed Drive

  • Ryeom, Jeong-Duk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.9
    • /
    • pp.7-11
    • /
    • 2007
  • The objective of this study is to evaluate the characteristics of a newly proposed high-speed drive method for the gray scale display for high-resolution plasma display panels(PDP). In the experiment it was found that the characteristics of gray scale display are not closely affected by a priming period below 50[${\mu}s$], the width of the priming period, and that it can be driven stably from the brightest sub-field to the darkest sub-field even though a priming discharge is applied to the 1 TV-field only once. Moreover, from the experimental result, the gray scale pattern of 8-bit and 9 sub-fields was stably displayed in the experimental PDP with scan pulses having the pulse width of 0.7[${\mu}s$]. An address voltage margin of about 25[V] and a sustain voltage margin of about 10[V] was obtained.

Real time Image Processor for Reproduction of Gray Levels in Dark Areas on Plasma Display Panel (PDP) (플라즈마 디스플레이 패널의 어두운 영역에서의 계조 재현을 위한 실시간 영상처리기)

  • Lee, Chang-Hun;Park, Seung-Ho;Gang, Jin-Gu;Kim, Chun-U
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.1
    • /
    • pp.46-54
    • /
    • 2002
  • Plasma Display Panel (PDP) is required to be both the determination of white point of each gray level and the inverse gamma correction since no-balanced RGB cell and linear property of PDP, respectively. However, these two methods cause degradation of grey level representation and undesirable false contour in the dark areas on PDP. In this paper, we implemented real time image processor of the proposed error diffusion algorithm and unsharp masking operation to protect the blurring image caused by the error diffusion. Experimental results showed drastic improvements of gray level representation and reduction of undesirable false contour.

A new high efficiency splitted sustaining driver for plasma display panel (PDP) (새로운 고효율 플라즈마 디스플레이 패널 분할 서스테인 구동 드라이버)

  • Yi Kang-Hyun;Choi Seong-Wook;Moon Gun-Woo;Park Jung-Pil;Jung Nam-Sung
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.91-93
    • /
    • 2006
  • A new High Efficiency splitted sustaining driver for Plasma Display Panel (PDP) is proposed. The proposed circuit is suitable for the large screen PDP. The features of the proposed circuit are zen voltage switching (ZVS) of all main power switches, the reduction of reaction power loss for energy recovering, the stable light emission and simple structure.

  • PDF

A new low-cost asymmetric current-fed energy-recovery circuit for a plasma display panel (PDP을 위한 새로운 저가형 비대칭 전류 주입 에너지 회수 회로)

  • Kim Tae-Sung;Han Sang-Kyoo;Moon Gun-Woo;Youn Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.78-80
    • /
    • 2006
  • A new low-cost asymmetric current-fed energy-recovery circuit (ERC) for a plasma display panel (PDP) is proposed. LC resonant circuit biased by $V_s/2$ and composed of single switch is used as ERC on both sides of the PDP, slow discharging and fast charging times can be employed, and inductor currents are built up before the PDP is charged and discharged. Therefore, it features a low cost, fully charged/discharged PDP, zero voltage switching (ZVS), low electromagnetic interference (EMI), low current stress, no severe voltage notch, and high energy-recovery capability.

  • PDF

A Study on the Improvement of the High Temperature Misfiring in AC PDP (AC PDP의 고온 오방전 개선에 관한 연구)

  • Choi, Joon-Young;Ham, Myung-Soo;Park, Chung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.10
    • /
    • pp.1125-1131
    • /
    • 2004
  • Misfiring is usually observed at high ambient temperature in plasma display panel (PDP). This leads to bad image quality and limits the productivity of PDP industry. In this paper, experimental observations and improvement on the misfiring at high ambient temperature have been studied. In order to reduce the high ambient temperature misfiring different slope of ramp erase pulse corresponding to the temperature are applied. The experimental results show that the suggested method is quite effective for reducing the high temperature misfiring phenomena.

Fabrication and Its Evaluation of the Light-weight Composite Pallet Plank for an Assembly Line of LCD/PDP by using Honeycomb Sandwich Panel (하니컴 샌드위치 Panel을 이용한 LCD/PDP 생산 공정용 경량 고기능성 복합 신소재 파렛트 제조 및 그 특성 평가)

  • Kim, Yun-Hae;Choi, Byung-Geun;Son, Jin-Ho;Jo, Young-Dae;Eum, Soo-Hyun;Woo, Byung-Hun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.304-310
    • /
    • 2006
  • A typical honeycomb sandwich panel consists of two thin, high-strength facings bonded to a thick, light-weight core. Each component by itself is relatively weak and flexible, but when it combined in a sandwich panel they produce a structure that is stiff, strong, and lightweight. To prove the suitability the honeycomb sandwich structure with prepreg, the mechanical properties of the skin materials and honeycomb sandwich structure were evaluated with the static strength tests. Accordingly, the honeycomb sandwich structure made by autoclave process is available for a panel on LCD/PDP assembly line.

Patterning of the ITO Electrode of AC PDP using $Nd:YVO_4$ Laser

  • Kim, Kwang-Ho;Ahn, Min-Hyung;Kwon, Sang-Jik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1368-1371
    • /
    • 2007
  • Laser-ablated ITO patterns showed the formation of shoulders at the edge of the ITO lines and a ripple-like structure of the etched bottom. When the laser ablation was applied in the fabrication of PDP panel, the laser-ablated ITO patterns showed a higher sustaining voltage than that of chemically wet-etched ITO.

  • PDF