• 제목/요약/키워드: PDL

검색결과 176건 처리시간 0.024초

($17{\beta}$-Estradiol 및 1,25-Dihydroxyvitamin $D_3$가 치주인대 세포의 Interleukin-6의 생성에 미치는 영향 (Effect of $17{\beta}$-Estradiol and 1,25-Dihydroxyvitamin $D_3$ on Interleukin-6 Production of Periodontal Ligament Cells)

  • 곽월아;최봉규;이현정;유윤정
    • Journal of Periodontal and Implant Science
    • /
    • 제29권3호
    • /
    • pp.645-654
    • /
    • 1999
  • Interleukin-6(IL-6) stimulate osteoclast differentiation. $17{\beta}$-estradiol, 1,25-dihydroxyvitamin $D_3$(1,25-$(OH)_2D_3$) and interleukin-$1{\beta}$ inhibit or stimulate osteoclast differentiation by decreasing or increasing the synthesis of interleukin-6(IL-6) from stromal/osteoblastic cells, respectively. Periodontal ligament(PDL) cells reside between the alveolar bone and the cementum and have osteoblastic characteristics. To estimate the effect of $17{\beta}$-estradiol and 1,25$(OH)_2D_3$ on IL-6 production of PDL cells, PDL cells were treated with $17{\beta}$-estradiol or 1,25-$(OH)_2D_3$ in the absence or the presence of IL-$1{\beta}$. The concentration of IL-6 produced form PDL cells was determined by enzym linked immunosorbent assay(ELISA). In unstimulated PDL cells, we detected constitutive production of IL-6 at 1st and 2nd day. IL-$1{\beta}$ increased IL-6 synthesis at 1st day and 2nd day. $17{\beta}$-estradiol had no significant effect on the secretion of this cytokine, either constitutively or after stimulation with IL- $1{\beta}$(0.05 ng/ml). 1,25-$(OH)_2D_3$($10^{-8}M$) decreased not only constitutive IL-6 production but also IL-$1{\beta}$-induced IL-6 production at 2nd day. These results suggest that 1,25-$(OH)_2D_3$ may control IL-$1{\beta}$-induced osteoclast differentiation by decreasing IL-$1{\beta}$-induced IL-6 secretion of PDL cells.

  • PDF

Evaluation of vitrification for cryopreservation of teeth

  • Dissanayake, Surangi C.;Che, Zhong-Min;Choi, Seong-Ho;Lee, Seung-Jong;Kim, Jin
    • Journal of Periodontal and Implant Science
    • /
    • 제40권3호
    • /
    • pp.111-118
    • /
    • 2010
  • Purpose: The aim of this study was to investigate whether vitrification in the cryopreservation of periodontal ligament (PDL) cells could be useful for tooth banking. Methods: In step 1, primary cultured human PDL cells were cryopreserved in 100% conventional cryopreservation media and 100% vitrification media (ESF40 media) in different temperatures for 2 weeks. In step 2, a series of modified vitrification formulae named T1 (75% vitrification media + 25% F-media), T2 (50% vitrification media + 50% F-media) and T3 (25% vitrification media + 75% F-media) were used to store PDL cells for 2 weeks and 4 weeks in liquid nitrogen. MTT assay was performed to examine the viability of PDL cells. Results: Maximum cell viability was achieved in cells stored in 100% conventional cryopreservation media at $-196^{\circ}C$ (positive control group) in step 1. Compared to the positive control group, viability of the cells stored in 100% vitrification media was very low as 10% in all test conditions. In step 2, as the percentage of vitrification media decreased, the cell viability increased in cells stored for 2 weeks. In 4-week storage of cells in step 2, higher cell viability was observed in the T2 group than the other vitrification formulae while the positive control group had the highest viability. There was no statistically significant difference in the cell viability of 2-week and 4-week stored cells in the T2 group. Conclusions: These observations indicate 100% vitrification media is not successful in PDL cell cryopreservation. Conventional cryopreservation media is currently the most appropriate media type for this purpose while T2 media would be interesting to test for long-term storage of PDL cells.

치은섬유아세포의 복제노화가 세포주기 조절에 미치는 영향 (Effects of Replicative Senescence on the Cell Cycle Regulation in Human Gingival Fibroblasts)

  • 박영채;양대승;김재호;김현아;유용욱;신형식
    • Journal of Periodontal and Implant Science
    • /
    • 제31권1호
    • /
    • pp.135-148
    • /
    • 2001
  • Gingival fibroblasts are major cellular component of gingiva. However, the molecular mechanisms of senescence of human gingival fibroblasts are unknown. Human fibroblasts undergo replicative senescence in vitro after a limited number of population doublings. A reduced rate of proliferation is a prominent phenomenon observed in senescent fibroblasts. This phenomenon is controled by cell cycle regulatory proteins. The purpose of present study was to investigate the effect of replicative senescence on cell cycle progression and to find out its molecular mechanisms in human gingival fibroblasts. Replicative senescence of gingival fibroblasts were induced by subsequent cultures that were repeated up to 18 passage. In the present study, I examined change of cell proliferation, cell activity, cell viability and cell cycle progression during the replicative process. Also, I examined expression of cell cycle regulatory proteins which was estimated by western blot analysis. Cell proliferation, cell activity and cell viability of gingival fibroblasts were notably decreased with increase of population doubling level(PDL). S phase was decreased and G1 phase was increased with increase of PDL. Western blot analysis showed that levels of P16, p21 and p53 of senescent gingival fibroblasts(PDL41, PDL58) were higher than young fibroblasts(PDL27) and cdk4 were lower than young fibroblasts(PDL27). In conclusion, these results suggest that proliferative function of human gingival fibroblasts may be decreased by replicative senescence and its molecular mechanisms may be activatied with p16, p21, p53 and pRB, and repressed wtih cdk4.

  • PDF

치수, 치주인대 및 치낭에서 얻어진 성체줄기세포의 조골세포로의 분화능력 평가에 관한 연구 (A study on differentiation potency of adult stem cells from pulp, periodontal ligament, and dental follicle to osteoblast)

  • 이중규;이재훈
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제36권1호
    • /
    • pp.7-15
    • /
    • 2010
  • Complex human tissues harbor stem cells and precursor cells, which are responsible for tissue development or repair. Recently, dental tissues such as dental pulp, periodontal ligament (PDL), dental follicle have been identified as easily accessible sources of undifferentiated cells. These tissues contain mesenchymal stem cells that can be differentiate into bone, cartilage, fat or muscle by exposing them to specific growth conditions. In this study, the authors procured the stem cell from pulp, PDL, and dental follicle and differentiate them into osteoblast and examine the bone induction capacity. Dental pulp stem cell (DPSC), periodontal ligament stem cell (PDLSC), and dental follicle precursor cell (DFPC) were obtained from human 3rd molar and cultured. Each cell was analyzed for presence of stem cell by fluorescence activated cell sorter (FACs) against CD44, CD105 and CD34, CD45. Each stem cell was cultured, expanded and grown in an osteogenic culture medium to allow formation of a layer of extracellular bone matrix. Osteogenic pathway was checked by alizarin red staining, alkaline phosphatase (ALP) activity test and RT-PCR for ALP and osteocalcin (OCN) gene expression. According to results from FACs, mesenchymal stem cell existed in pulp, PDL, and dental follicle. As culturing with bone differentiation medium, stem cells were differentiated to osteoblast like cell. Compare with stem cell from pulp, PDL and dental follicle-originated stem cell has more osteogenic effect and it was assumed that the character of donor cell was able to affect on differential potency of stem cell. From this article, we are able to verify the pulp, PDL, and dental follicle from extracted tooth, and these can be a source of osteoblast and stem cell for tissue engineering.

Gene expression pattern during osteogenic differentiation of human periodontal ligament cells in vitro

  • Choi, Mi-Hye;Noh, Woo-Chang;Park, Jin-Woo;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • 제41권4호
    • /
    • pp.167-175
    • /
    • 2011
  • Purpose: Periodontal ligament (PDL) cell differentiation into osteoblasts is important in bone formation. Bone formation is a complex biological process and involves several tightly regulated gene expression patterns of bone-related proteins. The expression patterns of bone related proteins are regulated in a temporal manner both in vivo and in vitro. The aim of this study was to observe the gene expression profile in PDL cell proliferation, differentiation, and mineralization in vitro. Methods: PDL cells were grown until confluence, which were then designated as day 0, and nodule formation was induced by the addition of 50 ${\mu}g$/mL ascorbic acid, 10 mM ${\beta}$-glycerophosphate, and 100 nM dexamethasone to the medium. The dishes were stained with Alizarin Red S on days 1, 7, 14, and 21. Real-time polymerase chain reaction was performed for the detection of various genes on days 0, 1, 7, 14, and 21. Results: On day 0 with a confluent monolayer, in the active proliferative stage, c-myc gene expression was observed at its maximal level. On day 7 with a multilayer, alkaline phosphatase, bone morphogenetic protein (BMP)-2, and BMP-4 gene expression had increased and this was followed by maximal expression of osteocalcin on day 14 with the initiation of nodule mineralization. In relationship to apoptosis, c-fos gene expression peaked on day 21 and was characterized by the post-mineralization stage. Here, various genes were regulated in a temporal manner during PDL fibroblast proliferation, extracellular matrix maturation, and mineralization. The gene expression pattern was similar. Conclusions: We can speculate that the gene expression pattern occurs during PDL cell proliferation, differentiation, and mineralization. On the basis of these results, it might be possible to understand the various factors that influence PDL cell proliferation, extracellular matrix maturation, and mineralization with regard to gene expression patterns.

Bacterial PAMPs and Allergens Trigger Increase in $[Ca^{2+}]_i$-induced Cytokine Expression in Human PDL Fibroblasts

  • Son, Ga-Yeon;Shin, Dong Min;Hong, Jeong Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권3호
    • /
    • pp.291-297
    • /
    • 2015
  • An oral environment is constantly exposed to environmental factors and microorganisms. The periodontal ligament (PDL) fibroblasts within this environment are subject to bacterial infection and allergic reaction. However, how these condition affect PDL fibroblasts has yet to be elucidated. PDL fibroblasts were isolated from healthy donors. We examined using reverse transcription-polymerase chain reaction and measuring the intracellular $Ca^{2+}$ concentration ($[Ca^{2+}]_i$). This study investigated the receptors activated by exogenous bacterial pathogens (Lipopolysaccharide and peptidoglycan) and allergens (German cockroach extract and house dust mite) as well as these pathogenic mediators-induced effects on the intracellular $Ca^{2+}$ signaling in human PDL fibroblasts. Moreover, we evaluated the expression of pro-inflammatory cytokines (interleukin (IL)-$1{\beta}$, IL-6, and IL-8) and bone remodeling mediators (receptor activator of NF-${\kappa}B$ ligand and osteoprotegerin) and intracellular $Ca^{2+}$-involved effect. Bacterial pathogens and allergic mediators induced increased expression of pro-inflammatory cytokines, and these results are dependent on intracellular $Ca^{2+}$. However, bacterial pathogens and allergic mediators did not lead to increased expression of bone remodeling mediators, except lipopolysaccharide-induced effect on receptor activator of NF-${\kappa}B$ ligand expression. These experiments provide evidence that a pathogens and allergens-induced increase in $[Ca^{2+}]_i$ affects the inflammatory response in human PDL fibroblasts.

치주인대세포에 대한 Bone morphogenetic protein-7의 영향 (Effect of BMP-7 on the rat periodontal ligament cell)

  • 김경희;김영준;정현주
    • Journal of Periodontal and Implant Science
    • /
    • 제35권2호
    • /
    • pp.289-298
    • /
    • 2005
  • Bone morphogenetic protein-7(BMP-7), a member of the transforming growth factor superfamily, stimulates osteoblast differentiation and bone formation. There are lots of evidences supporting a direct participation of periodontal ligament(PDL) cells on periodontal tissue regeneration. The purpose of this study was to evaluate the effect of recombinant human(rh) BMP-7 on primary rat PDL cells in vitro, with special focus on the ability of bone formation. The PDL cells were cultured with rhBMP-7 at the concentration of 0, 10, 25, 50, 100 and 200ng/ml for MTT assay. We evaluated the alkaline phosphatase activity at 3 and 5 days of incubation and the ability to produce mineralized nodules of rat PDL cells at 14 days of cell culture in concentration of 0, 10, 25, 50 and 100ng/ml. The cell activity was not reduced in cells treated with BMP-7 at $10{\sim}100ng/ml$, whereas the cell activity was reduced in the concentration of 200ng/ml than the control at day 1 and 3(p<0.01). At 3 and 5 day, alkaline phosphatase activity was significantly increased in cells treated with BMP-7 at 50ng/ml and 100ng/ml(p<0.05). The area of mineralized bone nodule was greater in cells treated with BMP-7 at 50 and 100 ng/ml than the control(p<0.01). These results suggest that rhBMP-7 stimulate rat PDL cells to differentiate toward osteoblast phenotype and secretion of the extracellular matrix of rat PDL cells.

배양된 치주인대세포와 치은섬유아세포에서 상이하게 발현된 유전자들의 검토 양상 (Screening of genes differentially expressed in cultured human periodontal ligament cells and human gingival fibroblasts)

  • 윤혜정;최미혜;여신일;박진우;최병주;김문규;김정철;서조영
    • Journal of Periodontal and Implant Science
    • /
    • 제36권3호
    • /
    • pp.613-625
    • /
    • 2006
  • Periodontal ligament(PDL) cells and human gingival fibroblasts(HGFs) play important roles in development, regeneration, normal function, and pathologic alteration. PDL cells and HGFs have the similarity related with general characteristics of fibroblast such as spindle shaped morphology, the presence of vimentin intermediate filament and the synthesis of interstitial collagens and fibronectin. There were many studies about the differences between PDL cells and HGFs, but they were not about whole gene level. In this study, we tried to explain the differences of gene expression profiles between PDL cells and HGFs, and the differences among three individuals by screening gene expression patterns of PDL cells and HGFs, using cDNA microarray. Although there were some variants among three experiments, a set of genes were consistentely and differentially expressed in one cell type. Among 3,063 genes, 49 genes were more highly expressed in PDL cells and 12 genes were more highly expressed in HGFs. The genes related with cell structure and motility were expressed more highly in PDL cells. These are cofilin 1, proteoglycan 1 secretory granule, collagen type I(${\alpha}$ 1), adducin gamma subunit, collagen type III(${\alpha}$ 1), fibronectin, lumican(keratan sulfate proteoglycan), and ${\alpha}$ -smooth muscle actin. Tissue inhibitor of metalloproteinase known as the enzyme controlling extracellular matrix with matrix metalloproteinase is more highly expressed in PDL cells, osteoprotegerin known as osteoclastogenesis inhibitory factor is more highly expressed in HGFs. We performed northern blot to verify cDNA microarray results on selected genes such as tissue inhibitor of metalloproteinase, fibronectin, osteoprogeterin. The result of northern blot analysis showed that each cell expressed the genes in similar pattern with cDNA microarray result. This result indicates that cDNA microarray is a reliable method in screening of gene expression profiles.

Adenovirus에 의해서 발현된 BMP-2가 치주인대세포의 분화에 미치는 영향 (Osteogenic activity of an adenovirus expressing BMP-2 on Human Periodontal Ligament cells)

  • 김경화;박윤정;이상철;김태일;설양조;이용무;구영;한수부;정종평;류인철
    • Journal of Periodontal and Implant Science
    • /
    • 제35권2호
    • /
    • pp.511-524
    • /
    • 2005
  • The regeneration of lost periodontal tissue is a major goal of therapy. Periodontal ligament cell(PDL) is a specialized connective tissue that connects cementum and alveolar bone to maintain and support teeth in situ and preserve tissue homoeostasis. Bone morphogenetic proteins(BMPs) have shown much potential in the reconstruction of the periodontum by stimulate new bone and new cementum formation. Limitiations of BMP administration to periodontal lesions is high dose delivery, BMP transient biological activity, and low bioavailability of factors at the wound site. Gene delivery method can be alternative treatment strategy to deliver BMPs to periodontal tissue. The purpose of this study is to investigate efficiency of BMP-2 gene delivery with cell-based therapy using PDL cells. PDL cell were transduced with adenoviruses encoding either BMP-2 or Lac-Z gene. To evaluate osteogenic activity of expressed BMP-2 on PDL cells, we investigated secreted BMP-2, cellular activity, ALPase, produced mineralized nodules. To evaluate collagen scaffold as carrier for transduced cell delivery, we examined morphology and secreted BMP-2 of transducd PDL cells on it. BMP-2 transducd PDL cells produced higher levels of BMP-2, ALPase, mineralized nodules than non transduced cells. Cellular activity of transduced cells was showed similar activity to non transduced cells. Transduce cells attached on collagen scaffold secreted BMP-2 at 7day and was showed similar morphology to non transduced cells. These results demonstrated that transduced PDL cells produced biologically active BMP-2 and collagen scaffold could be carrier of transducd cells.

기계적 자극에 대한 백서 치주인대 섬유아세포의 변화 (Analysis of PDL Fibroblast Change During Mechanical Stimuli in the Rats)

  • 김태균;김창성;조규성;채중규;김종관;최성호
    • Journal of Periodontal and Implant Science
    • /
    • 제31권2호
    • /
    • pp.277-285
    • /
    • 2001
  • Periodontal disease is characterized by inflammation and subsequent loss and/or damage to tooth-supporting tissues such as bone, cementum,and periodontal ligament. Periodontal ligament and cementum are the key tissues in the initial process of regeneration following periodontal disease. Therefore, studies on cementoblasts, which form cementum are emphasized. It is still unclear which cells cementoblast differentiate from. This study was conducted under the hypothesis that PDL fibroblast can differentiate into either cementoblast or osteoblast depending on the conditions of surrounding tissue. Clinically, with excessive traction force of orthodontic appliances or excessive occlusion hypercementosis is observed, and this has been confirmed histologically. Consequently, activation of cementoblast can be expected in rats when mechanical stimuli are given to PDL fibroblast. Therefore, the purpose of this article is to prove that PDL fibroblast differentiates into cementoblast in rats under mechanical stimuli using histologic and molecular methods. In this study, twenty rats were given hard diet. Ten of them were sacrificed after 1 week, and the others were sacrificed after two weeks. Slides were made from tooth specimen, and they were studied under the microscope. In addition, PDL fibroblast and cementum from the extracted teeth were analyzed with Northern blotting. In histologic examination, as time passed, PDL fibroblast migrated to the dentin side, differentiated into cementoblast, and formed new cementum. In Northern blotting, it was found that mRNA expression of cementoblast-specific proteins such as BSP, OC, OPN, and type I collagen were more prominent in rats sacrificed after 2 weeks of hard-diet than rats sacrificed after 1 week. From these findings we can conclude that PDL fibroblast can differentiate into cementoblast under mechanical stimuli. We think that 'Rat Models' used in this study will be beneficial to future studies regarding cementoblast.

  • PDF