• Title/Summary/Keyword: PD Control

Search Result 801, Processing Time 0.022 seconds

A PI-PD Controller Design for the Position Control of a Motor (전동기 위치 제어를 위한 PI-PD 제어기 설계)

  • Jang, Ju-Hyeong;Kim, Sang-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.1
    • /
    • pp.60-66
    • /
    • 2017
  • This paper presents the design of a proportional-integral (PI)-proportional-derivative (PD) position controller without using a speed controller in motor drive systems. Unlike the existing PI-PD position controller design methods, the proposed controller is designed by reducing the entire position control system to a second-order transfer function. Thus, the gain values for the PI-PD position controller can be determined easily by a given bandwidth of the position controller. The PI-PD position controller designed by the proposed method is adopted for position control in an interior permanent magnet synchronous motor drive system to confirm the validity of the proposed design method. The effectiveness of the proposed design method is confirmed through experiments.

Design of PI-PD Controllers to Improve a Response Characteristic in Position Control System (위치제어계에서 응답특성 개선을 위한 PI-PD제어기의 설계)

  • Kim, Jong-Hyeok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.651-657
    • /
    • 2012
  • In many control fields high position performance is essentially required in reducing the over-shoot phenomena which is produced by improving the quick response in starting and in minimizing the variation of the response characteristic on disturbance and load variation In this paper, the design method for a position control is suggested for constructing the PI-PD controllers by using an internal PD feedback loop in PI and PD control system. Applying this method to the position control system used a DC servo motor as a driver, the transfer PI and PD controllers are designed simultaneously and the coefficients of these controllers are determined by using the transfer function of a plant and a proportional coefficient from mathematical technique. From the result of computer simulation in PI-PD control system by applying this control technique, we can verify the usefulness of this method in rejecting of over-shoot of starting, compensating of response variation on the load variation, and shorting the settling time.

Studies on control mechanism and performance of a novel pneumatic-driven active dynamic vibration absorber

  • Kunjie Rong;Xinghua Li;Zheng Lu;Siyuan Wu
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.117-127
    • /
    • 2023
  • To efficiently attenuate seismic responses of a structure, a novel pneumatic-driven active dynamic vibration absorber (PD-ADVA) is proposed in this study. PD-ADVA aims to realize closed-loop control using a simple and intuitive control algorithm, which takes the structure velocity response as the input signal and then outputs an inverse control force to primary structure. The corresponding active control theory and phase control mechanism of the system are studied by numerical and theoretical methods, the system's control performance and amplitude-frequency characteristics under seismic excitations are explored. The capability of the proposed active control system to cope with frequency-varying random excitation is evaluated by comparing with the optimum tuning TMD. The analysis results show that the control algorithm of PD-ADVA ensures the control force always output to the structure in the opposite direction of the velocity response, indicating that the presented system does not produce a negative effect. The phase difference between the response of uncontrolled and controlled structures is zero, while the phase difference between the control force and the harmonic excitation is π, the theoretical and numerical results demonstrate that PD-ADVA always generates beneficial control effects. The PD-ADVA can effectively mitigate the structural seismic responses, and its control performance is insensitive to amplitude. Compared with the optimum tuning TMD, PD-ADVA has better control performance and higher system stability, and will not have negative effects under seismic wave excitations.

Contour Control of X-Y Tables Using Nonlinear Fuzzy PD Controller (비선형 퍼지 PD 제어기를 이용한 X-Y 테이블의 경로제어)

  • Chai, Chang-Hyun;Suk, Hong-Seong;Kim, Hee-Nyon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2849-2852
    • /
    • 1999
  • This paper describes the fuzzy PD controller using simplified indirect inference method. First, the fuzzy PD controller is derived from the conventional continuous time linear PD controller. Then the fuzzification, control-rule base, and defuzzification using SIIM in the design of the fuzzy controller are discussed in detail. The resulting controller is a discrete time fuzzy version of the conventional PD controller. which has the same linear structure. but are nonlinear functions of the input signals. The proposed controller enhances the self-tuning control capability. particularly when the process to be controlled is nonlinear. As the SIIM is applied, the fuzzy Inference results can be calculated with splitting fuzzy variables into each action component and are determined as the functional form of corresponding variables. So the Proposed method has the capability of the high speed inference and extending the fuzzy input variables easily. Computer simulation results have demonstrated the superior to the control Performance of the one Proposed by D. Misir et at. Final)y. we simulated the contour control of the X-Y tables with direct control strategies using the proposed fuzzy PD controller.

  • PDF

Control of Robot Manipulators Using PD-Sliding Mode hybrid Controller (PD-슬라이딩 모드 복합 제어기를 이용한 로봇 매니퓰레이터의 제어)

  • Lee, Kyu-Joon;Kyung, Tai-Hyun;Kim, Jong-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.2
    • /
    • pp.89-96
    • /
    • 2002
  • A new chattering free PD-sliding mode hybrid control scheme is proposed for robot manipulators. This hybrid controller is composed of a PD controller and a semi-continuous sliding mode controller. It has a good robust performance in reaching mode which does not possess invariance property of sliding mode, and has chattering free characteristics in sliding mode. Thus, the PD-sliding mode hybrid controller has a good robust performance in the whole region. It is shown that the proposed control has a good transient response and trajectory tracking performance for a 2-link SCARA robot manipulator.

Implementation of Balancing Control System for Two Wheeled Inverted Pendulum Robot (이륜 역진자 로봇의 밸런싱 제어시스템 구현)

  • An, Tae-Hee;Park, Jin-Hyun;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.432-439
    • /
    • 2012
  • In this paper, instead of the conventional PD controller for balancing control of two wheeled inverted pendulum robots, an improved PD controller using the neural network is proposed and implemented for performance verification. First, a two wheeled inverted pendulum robot system is constructed for experiment. Next proper gains of the conventional PD controller according to users' weights are obtained for balancing the robot by use of the trial and error method. The PD gains based on the trial and error method are generalized through the neural network. Experiment results show that the PD controller based on the neural network has better performance than the conventional PD controller.

Design of Fuzzy PD+I Controller Based on PID Controller

  • Oh, Sea-June;Yoo, Heui-Han;Lee, Yun-Hyung;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.34 no.2
    • /
    • pp.117-122
    • /
    • 2010
  • Since fuzzy controllers are nonlinear, it is more difficult to set the controller gains and to analyse the stability compared to conventional PID controllers. This paper proposes a fuzzy PD+I controller for tracking control which uses a linear fuzzy inference(product-sum-gravity) method based on a conventional linear PID controller. In this scheme the fuzzy PD+I controller works similar to the control performance as the linear PD plus I(PD+I) controller. Thus it is possible to analyse and design an fuzzy PD+I controller for given systems based on a linear fuzzy PD controller. The scaling factors tuning scheme, another topic of fuzzy controller design procedure, is also introduced in order to fine performance of the fuzzy PD+I controller. The scaling factors are adjusted by a real-coded genetic algorithm(RCGA) in off-line. The simulation results show the effectiveness of the proposed fuzzy PD+I controller for tracking control problems by comparing with the conventional PID controllers.

A High-Performance Induction Motor Drive with 2DOF I-PD Model­Following Speed Controller

  • El-Sousy Fayez F. M.
    • Journal of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.217-227
    • /
    • 2004
  • A robust controller that combines the merits of the feed-back, feed-forward and model-following control for induction motor drives utilizing field orientation control is designed in this paper. The proposed controller is a two-degrees-of­freedom (2DOF) integral plus proportional & rate feedback (I-PD) speed controller combined with a model-following (2DOF I-PD MFC) speed controller. A systematic mathematical procedure is derived to find the parameters of the 2DOF I-PD MFC speed controller according to certain specifications for the drive system. Initially, we start with the I-PD feed­back controller design, then we add the feed-forward controller. These two controllers combine to form the 2DOF I-PD speed controller. To realize high dynamic performance for disturbance rejection and set point tracking characterisitics, a MFC controller is designed and added to the 2DOF I-PD controller. This combination is called a 2DOF I-PD MFC speed controller. We then study the effect of the 2DOF I-PD MFC speed controller on the performance of the drive system under different operating conditions. A computer simulation is also run to demonstrate the effectiveness of the proposed controller. The results verify that the proposed 2DOF I-PD MFC controller is more accurate and more reliable in the presence of load disturbance and motor parameter variations than a 2DOF I-PD controller without a MFC. Also, the proposed controller grants rapid and accurate responses to the reference model, regardless of whether a load disturbance is imposed or the induction machine parameters vary.

Effect of Alginic Acid-Added Functional Drink(HAEJOMIIN)in Brown Angae(Undaria pinnatifida) on Obesity and Biological Activity of SD Rats (미역(Undaria pinnatifida)의 알긴산-첨가 기능성 음료(해조미인)가 흰쥐의 비만 및 생리활성에 미치는 영향)

  • 최진호;김동우
    • Journal of Life Science
    • /
    • v.7 no.4
    • /
    • pp.361-370
    • /
    • 1997
  • Sprague-Dawley male rats were fed experimental diet, and also were orally daministerred with 3.0% ultra low viscosity (ULV) sodium alginate-added functional drink(AL-3.0% group : HAEJOMIN), 5.0% polyedxtrose(PD)-added drink(PD-5.0group) and 2.5% polydextrose-added drink(PD-2.5 group) for 8 weeks. Effect of rhese dietary fiber-added functional drinks on body weight, feed and gross efficincies, triglyceride and cholesterol levels, LDL- cholesterol levels, hydroxyl radical and malondialdehyde levels, and superoxide dismutase (SOD) activity in serum of SD rats were evaluated. Administration of AL-3.0 drink and PD-5.0 drink resulted in a marked inhibition in increase of body weight compared with control and PD-2.5 groups for 8 weeks. Inhibition effect in body weight in 3.0% alginic acid-added drink )AL-3.0 froup_ showed a same trend in 5.0% polydextrose(PD)-added drink (PD-5.0 group)(p<0.001). Therefore, it is found that inhibition effects of obesity in 3.0% alginic acid-added drink were higher 2 times than that in same concentration of polydextrose(PD)-added drink. Triglyceride and cholesterol levels in AL-3.0 and PD-5.0 groups significantly decreased to 25$\sim$30% compared with control group(p<0.01$\sim$0.001), but there were no significant differences in these drinks. LDL-cholesterol levels in AL-3.0 group significantly decreased about 15% compared with PD-5.0 group, but atherogenic index in AL-3, 0 group showed a similar trend to that in PD-5.0 group. Hydroxyl radical formations and lipid peroxide(LPO) levels in AL-3, 0 and PD-5.0 groups significantly decreased to 15% and 20%, respectively, compared with control group(p, 0.05$\sim$0.01), but there were no significant differences in these drinks. Superoxide, dismutase(SOD) activity in AL-3.0 group significantly higher (about 255) than those in control and PD-5.0 groups(p<0.01). These results suggest that administration of ULV-sodium alginate-added functional drink(HAEJOMIIN) effectively can not only inhibit obesity, but also can intervent chronic degenerative disease and aging process.

  • PDF

Dynamic Model and P-PD Control based Flight Performance Evaluation for Hexa-Rotor Type UAV (헥사로터형 무인기의 모델링과 P-PD기반 비행성능평가)

  • Jin, Taeseok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1074-1080
    • /
    • 2015
  • In the last decades, the increasing interest in unmanned aerial vehicle(UAV) for military, surveillance, and rescue applications made necessary the development of flight control theory and body structure more and more efficient and fast. In this paper, we describe the design and performance of a prototype hexarotor UAV platform featuring an inertial measurement unit(IMU) based autonomous-flying for use in bluetooth communication environments. The proposed system comprises the construction of the test hexarotor platform, the implementation of an IMU, dynamic modeling and simulation in the hexarotor helicopter. Furthermore, the hexarotor helicopter with implemented IMU is connected with a micro controller unit(ARM-cortex) board. The P-PD control algorithm was used to control the hexarotor. We used the Matlab software to help us to tune the P-PD control parameters for quick response and minimizing the fluctuation. The control simulation and experiment on the real system are implemented in the test platform, evaluated and compared against each other.