• Title/Summary/Keyword: PCXMC Program

Search Result 13, Processing Time 0.033 seconds

Assessment of Effective Dose for General Radiography of Adults Based on Diagnostic Reference Level(DRL) by Using PCXMC Program (진단참고준위(DRL)를 기준으로 PCXMC 프로그램을 이용한 성인의 일반촬영 부위별 유효선량 평가)

  • Jeong, Hee-Cheol;Lee, SamYol
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.807-812
    • /
    • 2018
  • In this study, we investigated the conditions used in setting the recommendation level of general radiography diagnostic reference and tried to evaluate the effective dose and biological evaluation using PCXMC v2.0 program. As a result based on the effective dose of male in ICRP 60, the highest Pelvis AP was 0.794 mSv. The lowest Chest PA was 0.050 mSv. In the case of ICRP 103, the highest T-Spine AP was 0.906 mSv The lowest Chest PA was 0.052 mSv. For 40 years old male and female adults, effective doses of general radiography were evaluated and even if the medical exposures are not subject to the limit of dose, efforts should be made to reduce the medical exposures of the people by keeping the dose below the recommended amount in order to minimize the probable effect of radiation hazard.

Evaluation of Effective and Organ Dose Using PCXMC Program in DUKE Phantom and Added Filter for Computed Radiography System (CR 환경에서의 흉부촬영 시 Duke Phantom과 부가여과를 이용한 유효선량 및 장기선량 평가)

  • Kang, Byung-Sam;Park, Min-Joo;Kim, Seung-Chul
    • Journal of radiological science and technology
    • /
    • v.37 no.1
    • /
    • pp.7-14
    • /
    • 2014
  • By using a Chest Phantom(DUKE Phantom) focusing on dose reduction of diagnostic radiation field with the most use of artificial radiation, and attempt to reduce radiation dose studies technical radiation. Publisher of the main user of the X-ray Radiological technologists, Examine the effect of reducing the radiation dose to apply additional filtering of the X-ray generator. In order to understand the organ dose and effective dose by using the PC-Based Monte Carlo Program(PCXMC) Program, the patient receives, was carried out this research. In this experiment, by applying a complex filter using a copper and Al(aluminum,13) and filtered single of using only aluminum with the condition set, and measures the number of the disk of copper indicated by DUKE Phantom. The combination of the composite filtration and filtration of a single number of the disk of the copper is the same, with the PCXMC 2.0. Program looking combination of additional filtration fewest absorbed dose was calculated effective dose and organ dose. Although depends on the use mAs, The 80 kVp AP projection conditions, it is possible to reduce the effective amount of about 84 % from about 30 % to a maximum at least. The 120 kVp PA projection conditions, it is possible to reduce the effective amount of about 71 % from about 41 % to a maximum of at least. The organ dose, dose reduction rate was different in each organ, but it showed a decrease of dose rate of 30 % to up 100 % at least. Additional filtration was used on the imaging conditions throughout the study. There was no change in terms of video quality at low doses. It was found that using the DUKE Phantom and PCXMC 2.0 Program were suitable to calculate the effect of reducing the effective dose and organ dose.

Measurement and Analysis of Pediatric Patient Exposure Dose Using Glass dosimeter and a PC-Based Monte Carlo Program (Glass dosimeter와 PCXMC Program을 이용한 소아피폭선량 측정 및 분석)

  • Kim, Young-Eun;Lee, Jeong-Hwa;Hong, Sun-Suk;Lee, Kwan-Seob
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.14 no.2
    • /
    • pp.9-14
    • /
    • 2012
  • Exposed dose of young child should be managed necessarily. Young child is more sensitive than adult of a Radioactivity, especially, and lives longer than adult. Must reduce exposed dose which follows The ALARA(As Low As Reasonably Achievable)rule is recommended by ICRP(International Commission on Radiological Protection)within diagnostic useful range. Therefore, We have to prepare Pediatric DRL(Diagnostic Reference Level) in Korea as soon as possible. Consequently, in this study, wish to estimate organ dose and effective dose using PCXMC Program(a PC-Based Monte Carlo Program), and measure ESD(Entrance surface dose)and organ dose using Glass dosimeter, and then compare with DRL which follows EC(European Commission)and NRPB(National Radiological Protection Board). Using glass dosimeter and PCXMC programs conforming to the International Committee for Radioactivity Prevention(ICRP)-103 tissue weighting factor based on the item before the organs contained in the Chest, Skull, Pelvis, Abdomen in the organ doses and effective dose and dose measurements were evaluated convenience. In a straightforward way to RANDO phantom inserted glass dosimeter(GD352M)by using the hospital pediatric protocol, and in a indirect way was PCXMC the program through a virtual simulation of organ doses and effective dose were calculated. The ESD in Chest PA is 0.076mGy which is slightly higher than the DRL of NRPB(UK) is 0.07mGy, and is lower than the DRL of EC(Europe) which is 0.1mGy. The ESD in Chest Lateral is 0.130mGy which is lower than the DRL of EC(Europe) is 0.2mGy. The ESD in Skull PA is 0.423mGy which is 40 percent lower than the DRL of NRPB(UK) is 1.1mGy and is 28 percent lower than the DRL of EC(Europe) is 1.5mGy. The ESD in Skull Lateral is 0.478mGy which is half than the DRL of NRPB(UK) is 0.8mGy, is 40 percent lower than the DRL of EC(Europe) is 1mGy. The ESD in Pelvis AP is 0.293mGy which is half than the DRL of NRPB(UK) is 0.60mGy, is 30 percent lower than the DRL of EC(Europe)is 0.9mGy. Finally, the ESD in Abdomen AP is 0.223mGy which is half than the DRL of NRPB(UK) is 0.5mGy, and is 20 percent lower than the DRL of EC is 1.0mGy. The six kind of diagnostic radiological examination is generally lower than the DRL of NRPB(UK)and EC(Europe) except for Chest PA. Shouldn't overlook the age, body, other factors. Radiological technician must realize organ dose, effective dose, ESD when examining young child in hospital. That's why young child is more sensitive than adult of a Radioactivity.

  • PDF

Decreased of Patient Dose by Built-in Filter in Pelvis A-P Projection (골반촬영 시 내장된 필터를 이용한 환자선량 감소)

  • Shin, Seong-Gyu
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.8
    • /
    • pp.233-239
    • /
    • 2012
  • This study was performed to find a method to decrease the radiation exposure of patients when obtaining anteroposterior pelvic images maintaining the quality of the image by using the copper filter built in the DR equipment now being used in our hospital. We measured the level of radiation by changing the filters from none filter to 0.1mmCu, 0.2mmCu, and 0.3mmCu and detected the organ level of radiation by PCXMC program. As a result, high levels of radiation were detected in the bladders and testicles and the levels were decreased as the thickness of the filter was increased and the amount of decrease was the highest in 0.1mmCu. And we asked for the expert opinions to 3 radiologists and as a result, only images obtained by 0.1mmCu filter out of all the images on which copper filters were used were accepted as the ones with diagnostic value same as none filter. At this time, the incident dose on the pelvic region was 0.895mGy which was smaller than the one in none filter by 47%. Therefore, using 0.1mmCu when obtaining anteroposterior pelvic images can effectively decrease the radiation exposure of patients.

A Study on the Presentation of Entrance Surface Dose Model using Semiconductor Dosimeter, General Dosimeter, Glass Dosimeter: Focusing on Comparative Analysis of Effective Dose and Disease Risk through PCXMC 2.0 based on Monte Carlo Simulation (반도체 선량계, 일반 선량계, 유리 선량계를 이용한 입사표면선량 모델 제시에 관한 연구: 몬테카를로 시뮬레이션 기반의 PCXMC 2.0을 통한 유효선량과 발병 위험도의 비교분석을 중심으로)

  • Hwang, Jun-Ho;Lee, Kyung-Bae
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.2
    • /
    • pp.149-157
    • /
    • 2018
  • One of the purposes of radiation protection is to minimize stochastic effects. PCXMC 2.0 is a Monte Carlo Simulation based program and makes it possible to predict effective dose and the probability of cancer development through entrance surface dose. Therefore, it is especially important to measure entrance surface dose through dosimeter. The purpose of this study is to measure entrance surface dose through semiconductor dosimeter, general dosimeter, glass dosimeter, and to compare and analyze the effective dose and probability of disease of critical organs. As an experimental method, the entrance surface dose of skull, chest, abdomen was measured per dosimeter and the effective dose and the probability of cancer development of critical organs per area was evaluated by PCXMC 2.0. As a result, the entrance surface dose per area was different in the order of a general dosimeter, a semiconductor dosimeter, and a glass dosimeter even under the same condition. Base on this analysis, the effective dose and probability of developing cancer of critical organs were also different in the order of a general dosimeter, a semiconductor dosimeter, and a glass dosimeter. In conclusion, it was found that the effective dose and the risk of diseases differ according to the dosimeter used, even under the same conditions, and through this study it was found that it is important to present an accurate entrance surface dose model according to each dosimeter.

Assessment of Effective Dose by using additional Filters in Dental Radiography: PC-Based Monte Carlo Program Analysis Subjected on Intraoral Radiography (치과 방사선 촬영의 부가 필터 사용에 따른 유효선량 평가: 구내 촬영에 대한 PC-Based Monte Carlo Program 분석)

  • Kwak, Jong Hyeok;Kim, A Yeon;Kim, Gyeong Rip;Cho, Hee Jung;Moon, Sung Jin;Kil, Sang Hyeong;Lee, Jong Kyu
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.491-498
    • /
    • 2021
  • In this study, the effective dose was measured using the PCXMC v2.0 program by examining the conditions used to set the diagnostic reference level for intraoral imaging recommended by the government, and the effect of the Al additive filter was confirmed. In oral imaging, the largest effective dose was calculated from the oral mucosa among 11 organs. The effect of the Al additive filter showed an excellent radiation reduction effect at 2mm rather than 1mm. In the case of children aged 5 years, the overall effective dose was calculated to be high in all 11 organs because they are more sensitive to radiation than adults. And as a result of evaluating the image quality according to the use of an additional filter during intraoral imaging, there was no significant difference in SNR and CNR changes compared to before the additional filter was used. Based on this study, it is thought that additional filter settings can be recommended for intraoral imaging.

The Evaluation and Development of Head and Neck Radiation Protective Device for Chest Radiography in 10 Years Children (소아(10세) 흉부 방사선촬영에서의 두경부 방사선 방어기구 개발 및 평가)

  • Lee, Jun Ho;Lim, Hyun Soo;Lee, Seung Yeol
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.2
    • /
    • pp.118-123
    • /
    • 2015
  • The frequency of diagnostic radiation examinations in medical institutions has recently increased to 220 million cases in 2011, and the annual exposure dose per capita was 1.4 mSv, 51% and 35% respectively, compared to those in 2007. The number of chest radiography was found to be 27.59% of them, the highest frequency of normal radiography. In this study, we developed a shielding device to minimize radiation exposure by shielding areas of the body which are unnecessary for image interpretation, during the chest radiography. And in order to verify its usefulness, we also measured the difference in entrance surface dose (ESD) and the absorbed dose, before and after using the device, by using an international standard pediatric (10 years) phantom and a glass dosimeter. In addition, we calculated the effective dose by using a Monte Carlo simulation-based program (PCXMC 2.0.1) and evaluated the reduction ratio indirectly by comparing lifetime attributable risk of cancer incidence (LAR). When using the protective device, the ESD decreased by 86.36% on average, nasal cavity $0.55{\mu}Sv$ (74.06%), thyroid $1.43{\mu}Sv$ (95.15%), oesophagus $6.35{\mu}Sv$ (78.42%) respectively, and the depth dose decreased by 72.30% on average, the cervical spine(upper spine) $1.23{\mu}Sv$ (89.73%), salivary gland $0.5{\mu}Sv$ (92.31%), oesophagus $3.85{\mu}Sv$ (59.39%), thyroid $2.02{\mu}Sv$ (73.53%), thoracic vertebrae(middle spine) $5.68{\mu}Sv$ (54.01%) respectively, so that we could verify the usefulness of the shielding mechanism. In addition, the effective dose decreased by 11.76% from $8.33{\mu}Sv$ to $7.35{\mu}Sv$ before and after wearing the device, and in LAR assessment, we found that thyroid cancer decreased to male 0.14 people (95.12%) and female 0.77 people (95.16%) per one million 10-year old children, and general cancers decreased to male 0.14 people (11.70%) and female 0.25 people (11.70%). Although diagnostic radiation examinations are necessary for healthcare such as the treatment of diseases, based on the ALARA concept, we should strive to optimize medical radiation by using this shielding device actively in the areas of the body unnecessary for the diagnosis.

The Dose and Risk Reduction from Adoption of Automatic mA Control in 4D CT Scans (자동전류조절기능을 사용한 4D CT 촬영시 선량 및 위험도 저감 효과)

  • Ko, Young Eun;Je, Hyoung Uk;Hwang, Yeon;Park, Sung Ho
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.267-272
    • /
    • 2015
  • In this study, the reduction of dose and risk was evaluated from using automatic mA control in 4D CT scan of patients whose organ movement was considered for gated radiotherapy. The organ doses, CTDI, effective doses from 4D CT with and without using automatic mA control were evaluated using CT-Expo program for each 10 patients of liver and lung cancer, and the risk of exposure induced death and loss of life expectancy were evaluated using PCXMC program. It was founded that there were 26.8%, and 15.5% dose reduction in organ doses and CTDI for liver and lung cancer patients and 16.5% and 19.8% risk reduction in liver and lung cancer patients. The organ doses and effective doses were evaluated for the parameter of each patient used in CT scans, and risks considering age and gender could be evaluated. It was founded that there were 21.2% dose reduction and 18.2% risk reduction in 4D CT scan using AEC for liver and lung cancer patients.

A Study on Dose and Image Quality according to X-ray Photon Detection Method in Digital Radiography System (Digital Radiography System에서 X선 광자 검출 방식에 따른 선량 및 화질 특성에 관한 연구)

  • Hong, Sun Suk;Kim, Ho Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.247-253
    • /
    • 2013
  • The purpose is a comparative evaluation in the DR System according to the dosimetry and image quality of the quantitative and objective via Direct digital radiography, Indirect digital radiography, Image intensifier (Charge Coupled Device type) digital radiography. The experimental method used rando phantom and measured the entrance surface dose. And through using the measured entrance surface dose and then using the PCXMC program were evaluated risk due to irradiation and the effective dose. SNR and NPS and CNR were measured and analyzed by using 21cm acryl phantom. Significance of measured value was evaluated by statistics method. Entrance surface dose, major organ dose, effective dose all of them were measured the lowest rated in direct DR when it is on the basis of direct DR dose, high-dose ratio were measured in I.I DR approximately 1.3 times, indirect DR approximately 2.4 times. Risk in accordance with radiation also was measured same as dose ratio. On the conclusion that SNR measurement result based on direct DR SNR measurements, low-SNR ratio were measured in I.I DR approximately 7.25 times, indirect DR approximately 1.48 times. On the conclusion that CNR measurement result based on direct DR CNR measurements, high-dose ratio were measured in I.I type DR approximately 1.16 tims and low-dose ratio were measured in indirect DR approximately 0.87 times. Therefore Direct DR system using a-selenium sensing element to detect x-ray photon is thought effectively at the examination such as infant to sensitive irradiation and the genital gland. Because quality image is built by low dose. Also when it is necessary that image test requiring many diagnosis information, indirect DR system is thought effectively.

Study on dose and image quality by Added filter and Grid change when exam abdominal fluoroscopy (복부투시조영 검사 시 Added filter와 Grid 변화에 따른 선량 및 화질에 관한 연구)

  • Hong, Seon Sook;Kang, Kyeong Mi;Seong, Min Suk;Lee, Jong Woong
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.14 no.2
    • /
    • pp.47-56
    • /
    • 2012
  • Amount of radiation exposure by seeing through fluoroscopy examination while is many patient exposure administration and unprepared misgovernment be. In this study, abdominal fluoroscopy during the scan, the dose and image quality change according to the use of grid and added filter optimized by measuring the test condition is proposed. Uses seeing through fluoroscopy examination equipment of Image Intensifier of Easy Diagnost Eleva (Philips), under tube type and uses Human phantom and measures average area dose according to grid insertion existence and nonexistence and added filter kind change. Measure sum of 29 organ dose and effective dose through PCXMC imagination simulation program and image J program through noise, SNR, image distortion was measured. Resolution, sharpness, and analyzed using the MTF curves. Fluorography the grid to insert the filter thickness and thickening and increased the average area dose and organ doses and effective dose. In the case of spot examination, when inserted grid, average area dose and organ dose and effective dose increased. Filter thickens the average area dose decreased, but the organ doses and effective dose were increased when use 0.2mmCu+1mmAl filter, decreased slightly. Noise and SNR measurements without inserting the gird, if you do not use the added filter was the lowest and when measure the distortion, 0.1mmCu+1mmAl filter was no difference of image quality in case insert grid was judged that when did not use occasion added filter that do not use grid, difference of image quality does not exist. Did not show a big difference, according to the grid and uses of the added filter sharpness, and resolution. Patient dose increases with factors that reduce the quality of the image so reckless grid and the use of the added filter when abdominal fluoroscopy examination should be cautious in using.

  • PDF