• Title/Summary/Keyword: PCR-amplify

Search Result 218, Processing Time 0.031 seconds

Simultaneous Detection of Cytomegalovirus, Epstein-Barr Virus, Hepatitis B Virus, and Parvovirus by a Multiplex PCR (다중 중합효소 연쇄반응을 이용한 DNA 바이러스의 동시검출)

  • Sung, Hye-Ran;Joo, Jin-Young;Lee, Chong-Kil;Chung, Yeon-Bok;Song, Suk-Gil
    • Korean Journal of Microbiology
    • /
    • v.43 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • We describe a multiplex PCR method that can detect and differentiate simultaneously four different kinds of DNA viruses, Epstein-Barr virus (EBV), cytomegalovirus (CMV), hepatitis B virus (HBV) and parvovirus B19 (B19). Primers for the multiplex PCR reaction were designed to amplify specific regions of the EBV (pol), CMV (pol), HBV (pol) and B19 (ns) viral genomes and used to simultaneously detect individual viruses. In order to achieve optimal sensitivity and specificity for multiplex PCR, the thermo-cycling parameters, primer sequences, and concentration of each reaction components were optimized systematically. The sensitivity of the detection method ranged between 5 and 10 copies of viral genome with a mixture of multiple primer pairs. Furthermore, this highly sensitive test showed no cross-reactivity among the four viruses. Thus, the results obtained in this study provide evidence that the assay system is a good tool for supporting the diagnosis of viral infection and contamination.

Development of a Rapid Assay for Peach Rosette Mosaic Virus Using Loop-mediated Isothermal Amplification (Peach rosette mosaic virus 검출을 위한 신속한 등온증폭법 개발)

  • Lee, Siwon;Lee, Jin-Young;Kim, Jin-Ho;Rho, Jae-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.493-496
    • /
    • 2016
  • Peach rosette mosaic virus (PRMV) is a plant virus that was first reported in 1933 by Peach. It can infect hosts including peach, grape, blueberry, dandelion, plum, cherry tree, and weeds. PRMV is non-reportable in Korea, but it is designated as a controlled virus requiring plant quarantine. In this study, for the rapid and specific detection of PRMV, we developed an assay using loop-mediated isothermal amplification (LAMP). Comparison between conventional polymerase chain reaction (PCR) methods (real time-PCR and nested PCR) and LAMP for the detection of PRMV revealed an equivalent level of sensitivity by all the tested methods. For the LAMP assay, outer primer sets were used to amplify a 264-bp PCR product, which was then digested using the restriction enzyme Pvu II (CAG/CTG), and the visualization of two digestion fragments (207 + 57 bp) indicated a positive reaction. The developed LAMP assay for PRMV is expected to enable the rapid monitoring of PRMV in plants.

Type-specific Amplification of 5S rRNA from Panax ginseng Cultivars Using Touchdown (TD) PCR and Direct Sequencing

  • Sun, Hun;Wang, Hong-Tao;Kwon, Woo-Saeng;Kim, Yeon-Ju;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.33 no.1
    • /
    • pp.55-58
    • /
    • 2009
  • Generally, the direct sequencing through PCR is faster, easier, cheaper, and more practical than clone sequencing. Frequently, standard PCR amplification is usually interpreted by mispriming internal or external regions of the target template. Normally, DNA fragments were eluted from the gel using Gel extraction kit and subjected to direct sequencing or cloning sequencing. Cloning sequencing has often troublesome and needs more time to analyze for many samples. Since touchdown (TD) PCR can generate sufficient and highly specific amplification, it reduces unwanted amplicon generation. Accordingly, TD PCR is a good method for direct sequencing due to amplifying wanted fragment. In plants the 5S-rRNA gene is separated by simple spacers. The 5S-rRNA gene sequence is very well-conserved between plant species while the spacer is species-specific. Therefore, the sequence has been used for phylogenetic studies and species identification. But frequent occurrences of spurious bands caused by complex genomes are encountered in the product spectrum of standard PCR amplification. In conclusion, the TD PCR method can be applied easily to amplify main 5S-rRNA and direct sequencing of panax ginseng cultivars.

Development of Detection Method of Unapproved Genetically Modified Potato (EH92-527-1) in Korea using Duplex Polymerase Chain Reaction (Duplex PCR을 이용한 국내 미승인 유전자변형 감자(EH92-527-1)의 검사법 개발)

  • Yoo, Myung-Ryul;Kim, Jae-Hwan;Yea, Mi-Chi;Kim, Hae-Yeong
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.156-160
    • /
    • 2013
  • A duplex polymerase chain reaction (PCR) method was developed to detect unapproved genetically modified (GM) potato (EH92-527-1) in Korea. The UDP-glucose pyrophosphorylase (UGP) gene was selected as an endogenous reference gene for potato and used to validate the specificity for 14 different crops. The primer pair EH92-F/R was designed to amplify the junction sequence between the genome and transgenic region introduced in GM potato. Its specificity was also validated using several different GM events. The detection limit of the duplex PCR method is approximately 0.05%. This duplex PCR method could be useful for monitoring cultivation of unauthorized GM potato in Korea.

Rapid Detection of Salmonella Species in Foods Using PCR (PCR을 이용한 식품 내 Salmonella 균주의 신속 검출방법)

  • Jung, Sang-Hun;Kim, Myo-Young;Kim, Hyun-Joong;Kim, Tae-Woon;Ryu, Sang-Ryeol;Kim, Hae-Yeong
    • Applied Biological Chemistry
    • /
    • v.46 no.3
    • /
    • pp.225-228
    • /
    • 2003
  • This study was carried out to investigate the simple and rapid detection of Salmonella species in different kinds of food using PCR method. The specific primer sets (SIN1 and SIN2) was designed and utilized to amplify a 617 bp DNA fragment from salmonella species. The sensitivity of PCR was 1 pg of purified template DNA or $10^2$ cells from pure culture. The detection limit of Salmonella typhimurium on agarose gel electrophoresis was $10^3{\sim}10^4$ cells/g in the artificially contaminated food samples. These results suggested that this simple method could be applied to industrial fields for detection of Salmonella species in food.

Development of a Multiplex PCR for Simultaneous Detection of Blueberry Red Ringspot Virus and Blueberry Scorch Virus Including an Internal Control

  • Hae Min Lee;Eun Gyeong Song;Ki Hyun Ryu
    • Research in Plant Disease
    • /
    • v.29 no.1
    • /
    • pp.94-99
    • /
    • 2023
  • Blueberry red ringspot virus (BRRSV) and blueberry scorch virus (BlScV) are included in the quarantine virus list managed by the Korean Animal and Plant Quarantine Agency. A multiplex polymerase chain reaction (PCR) assay with an internal control was developed for the simultaneous detection of both viruses. The specific primers used here were designed based on the highly conserved regions of the genomic sequences of each virus, obtained from the National Center for Biotechnology Information nucleotide databases. The primers were designed to amplify a partial sequence within coat protein (CP) for detecting BRRSV and a partial sequence within the CP-16 kDa for detecting BlScV. 18S ribosomal RNA (rRNA) was used as internal control, and the primer set used in a previous study was modified in this study for detecting 18S rRNA. Each conventional PCR using the BRRSV, BlScV, and 18S rRNA primers exhibited a sensitivity of approximately 1 fg plasmid DNA. The multiplex PCR assay using the BRRSV, BlScV, and 18S rRNA primers was effective in simultaneously detecting the two viruses and 18S rRNA with a sensitivity of 1 fg plasmid DNA, similar to that of conventional PCR assays. The multiplex PCR assay developed in this study was performed using 14 blueberry cultivars grown in South Korea. BRRSV and BlScV were not detected, but 18S rRNA was all detected in all the plants tested. Therefore, our optimized multiplex PCR assay could simultaneously detect the two viruses and 18S rRNA in field samples collected from South Korea in a time-efficient manner. This approach could be valuable in crop protection and plant quarantine management.

Isolation and Characterization of Two Amino Acid-activating Domains of Peptide Synthetase Gene from Bacillus subtilis 713

  • Lee, Youl-Soon;You, Sang-Bae;Lee, Ji-Wan;Kim, Tae-Young;Kim, Sung-Uk;Bok, Song-Hae
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.4
    • /
    • pp.399-405
    • /
    • 1998
  • From the sequence alignment of various non-ribosomal peptide synthetases, several motifs of highly conserved sequences have been identified within each domain of peptide synthetases. We designed PCR primers based on the highly conserved nucleotide sequences to amplify and isolate a ∼7.2-kb DNA fragment of the Bacillus subtilis 713 which was isolated and reported to produce an antifungal peptide compound. Nucleotide sequence analysis of 4.8 kb of the predicted amino acids revealed significant homology to various peptide synthetases over the whole sequence and also revealed two amino acid-activating domains with highly conserved Core 1 to Core 6 and spacer motif. This suggests that the isolated DNA fragment is part of a peptide synthetase gene for antifungal peptide.

  • PDF

Analysis of Small-Subunit rDNA Sequences Obtained from Korean Peridinium bipes f. occultatum (Dinophyceae) (한국산 와편모조류 Peridinium bipes f. occultatum의 Small-Subunit Ribosomal DNA(SSU rDNA) 염기서열 분석)

  • Ki, Jang-Seu;Cho, Soo-Yeon;Han, Myung-Soo
    • ALGAE
    • /
    • v.20 no.1
    • /
    • pp.25-30
    • /
    • 2005
  • To clarify some confusions concerning identification of the Korean Peridinium species, genotypic analysis was performed with their SSU rDNA sequences. PCR was used to amplify the partial SSU rDNA of Peridinium isolates collected from three different Korean waters (Juam, Sang-sa and Togyo Reservoirs). The PCR products were allowed directly to sequence, which revealed each 942 bp of rDNA sequence. Analyses of the rDNA sequences showed that all the Korean isolates had the same genotype (100% sequence homology), and they were nearly identical to a Japanese strain of P. bipes f. occultatum (NIES 364; 99.8% sequence similarity). The sequence-based comparisons could clearly resolve P. bipes f. occultatum isolated from three different Korean waters.

Rapid detection of salmonellosis on serovar type of piglet with the polymerase chain reaction (중합효소연쇄반응을 이용한 자돈 혈청형에 따른 Salmonellosis의 신속한 검출)

  • Choi, Kyoung-seong;Park, Jin-ho;Kwon, Oh-deog;Lee, Joo-mook
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.4
    • /
    • pp.763-770
    • /
    • 1998
  • Salmonella typhimurium is a causitive agent of diarrhea, fever, gastroenteritis, septicemia and sudden death in piglet. The currently used methods such as IFA, ELISA, DNA hybridization assay is needed a long-time and difficult to detect the organism in carrier animal or contaminated sample with other agents. However, it is important to detect rapidly and sensitively S typhimurium in piglet with other infectious pathogens to minimize an economic loss. Two sets of PCR primer, rfbJ forward primer(5'-AGAATATGTAATTGTCAG-3') and reverse primer(5'-TAACCGTTTCAGTAGTTC-3') were designed to amplify a 882 by fragment of Salmonella serovar type B gene. The target genomic DNA for PCR was extracted from the cultivated materials with various enrichment periods in a nonselective enrichment agar and broth with clinical specimens. The PCR is carried out here made it possible to detect the gene from two hours. Also, the amplified fragment with PCR was cloned into pGEM-T vector and digested with restrict enzyme, and sequenced for the identification of Salmonella serotype B rfbJ gene. Duplicated cultivation agar-broth followed by PCR were performed to develop a rapid and sensitive detection of S typhlmurium based on serovar type. This duplicated cultivation-PCR method provides a sensitive and rapid diagnostic tool to detect Salmonella from infected piglet with improved sensitivity.

  • PDF

(CA/GT)n Simple Sequence Repeat DNA Polymorphism in Chlamydomonas reinhardtii (녹조류 Chlamydomonas reinhardtii의 (CA/GT)n Simple Sequence Repeat DNA 다형현상)

  • ;;Marvin W. FAWLEY
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.2
    • /
    • pp.113-117
    • /
    • 1997
  • Simple sequence repeats (SSR) are widely dispersed throughout eukaryotic genomes, highly polymorphic, and easily typed using polymerase chain reaction (PCR). The objective of this study was to determine the polymorphism of different Chlamydomonas reinhartdtii strains and to determine the mode of inheritance of the SSR locus in Chlamydomonas. A genomic DNA library of C. reinhardtii was constructed and screened with a radiolabeled $(AC)_{11}$ probe for the selection of (CA/GT)n repeat clone. Selected clone was seqeuenced, and PCR primer set flanking (CA/GT)n sequence was constructed. PCR was used to specifically amplify the SSR locus from multiple isolates of C. reinhardtii. The locus was polymorphic in some of the C. reinhardtii isolates. However, the locus was amplified only 4 of 6 isolates of C. reinhardtii, not in other 2 isolates of C. reinhardtii, suggesting that this locus is not extensively conserved. A simple Mendelian inheritance pattern was found, which showed 2:2 segregation in the tetrads resulting from a cross between C. reinhardtii and C. smithii. Our results suggest that this simple sequence repeat DNA polymorphism will be useful for identity testing, population studies, linkage analysis, and genome mapping in Chlamydomonas.

  • PDF