• Title/Summary/Keyword: PCR assays

Search Result 531, Processing Time 0.032 seconds

The Current Incidence of Viral Disease in Korean Sweet Potatoes and Development of Multiplex RT-PCR Assays for Simultaneous Detection of Eight Sweet Potato Viruses

  • Kwak, Hae-Ryun;Kim, Mi-Kyeong;Shin, Jun-Chul;Lee, Ye-Ji;Seo, Jang-Kyun;Lee, Hyeong-Un;Jung, Mi-Nam;Kim, Sun-Hyung;Choi, Hong-Soo
    • The Plant Pathology Journal
    • /
    • v.30 no.4
    • /
    • pp.416-424
    • /
    • 2014
  • Sweet potato is grown extensively from tropical to temperate regions and is an important food crop worldwide. In this study, we established detection methods for 17 major sweet potato viruses using single and multiplex RT-PCR assays. To investigate the current incidence of viral diseases, we collected 154 samples of various sweet potato cultivars showing virus-like symptoms from 40 fields in 10 Korean regions, and analyzed them by RT-PCR using specific primers for each of the 17 viruses. Of the 17 possible viruses, we detected eight in our samples. Sweet potato feathery mottle virus (SPFMV) and sweet potato virus C (SPVC) were most commonly detected, infecting approximately 87% and 85% of samples, respectively. Furthermore, Sweet potato symptomless virus 1 (SPSMV-1), Sweet potato virus G (SPVG), Sweet potato leaf curl virus (SPLCV), Sweet potato virus 2 ( SPV2), Sweet potato chlorotic fleck virus (SPCFV), and Sweet potato latent virus (SPLV) were detected in 67%, 58%, 47%, 41%, 31%, and 20% of samples, respectively. This study presents the first documented occurrence of four viruses (SPVC, SPV2, SPCFV, and SPSMV-1) in Korea. Based on the results of our survey, we developed multiplex RT-PCR assays for simple and simultaneous detection of the eight sweet potato viruses we recorded.

Comparison of One-Tube Nested-PCR and PCR-Reverse Blot Hybridization Assays for Discrimination of Mycobacterium tuberculosis and Nontuberculous Mycobacterial Infection in FFPE tissues

  • Park, Sung-Bae;Park, Heechul;Bae, Jinyoung;Lee, Jiyoung;Kim, Ji-Hoi;Kang, Mi Ran;Lee, Dongsup;Park, Ji Young;Chang, Hee-Kyung;Kim, Sunghyun
    • Biomedical Science Letters
    • /
    • v.25 no.4
    • /
    • pp.426-430
    • /
    • 2019
  • Currently, molecular diagnostic assays based on nucleic acid amplification tests have been shown to effectively detect mycobacterial infections in various types of specimen, however, variable sensitivity was shown in FFPE samples according to the kind of commercial kit used. The present study therefore used automated PCR-reverse blot hybridization assay (REBA) system, REBA Myco-ID HybREAD 480®, for the rapid identification of Mycobacterium species in various types of human tissue and compared the conventional one-tube nested-PCR assay for detecting Mycobacterium tuberculosis (MTB). In conventional nested-PCR tests, 25 samples (48%) were MTB positive and 27 samples (52%) were negative. In contrast, when conducted PCR-REBA assay, 11 samples (21%) were MTB positive, 20 samples (39%) were NTM positive, 8 samples (15%) were MTB-NTM double positive, and 13 samples (25%) were negative. To determine the accuracy and reliability of the two molecular diagnostic tests, the one-tube nested-PCR and PCR-REBA assays, were compared with histopathological diagnosis in discordant samples. When conducted nested-PCR assay, 10 samples (59%) were MTB positive and seven samples (41%) were negative. In contrast, when conducted PCR-REBA test, three samples (17%) were MTB positive, 10 samples (59%) were NTM positive and four samples (24%) were negative. In conclusion, the automated PCR-REBA system proved useful to identify Mycobacterium species more rapidly and with higher sensitivity and specificity than the conventional molecular assay, one-tube nested-PCR; it might therefore be the most suitable tool for identifying Mycobacterium species in various types of human tissue for precise and accurate diagnosis of mycobacterial infection.

Different Real Time PCR Approaches for the Fine Quantification of SNP's Alleles in DNA Pools: Assays Development, Characterization and Pre-validation

  • Mattarucchi, Elia;Marsoni, Milena;Binelli, Giorgio;Passi, Alberto;Lo Curto, Francesco;Pasquali, Francesco;Porta, Giovanni
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.555-562
    • /
    • 2005
  • Single nucleotide polymorphisms (SNPs) are becoming the most common type of markers used in genetic analysis. In the present report a SNP has been chosen to test the applicability of Real Time PCR to discriminate and quantify SNPs alleles on DNA pools. Amplification Refractory Mutation System (ARMS) and Mismatch Amplification Mutation Assay (MAMA) has been applied. Each assay has been pre-validated testing specificity and performances (linearity, PCR efficiency, interference limit, limit of detection, limit of quantification, precision and accuracy). Both the approaches achieve a precise and accurate estimation of the allele frequencies on pooled DNA samples in the range from 5% to 95% and don't require standard curves or calibrators. The lowest measurement that could be significantly distinguished from the background noise has been determined around the 1% for both the approaches, allowing to extend the range of quantifications from 1% to 99%. Furthermore applicability of Real Time PCR assays for general diagnostic purposes is discussed.

Detection of Acute Toxoplasmosis in Pigs Using Loop-Mediated Isothermal Amplification and Quantitative PCR

  • Wang, Yanhua;Wang, Guangxiang;Zhang, Delin;Yin, Hong;Wang, Meng
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.5
    • /
    • pp.573-577
    • /
    • 2013
  • A loop-mediated isothermal amplification (LAMP) assay allows rapid diagnosis of Toxoplasma gondii infection. In the present study, the LAMP assay was evaluated using blood from both naturally and experimentally infected pigs. The sensitivity of the LAMP assay was compared with that of Q-PCR. Both assays detected T. gondii in the blood of experimentally infected pigs, with 100% agreement. In infected blood samples, the parasite was detected as early as 2 days post-infection and reached a peak in 3-5 days. In 216 field serum samples, the detection rates of LAMP and Q-PCR assays were 6.9% and 7.8%, respectively. This result indicates that the sensitivity of the LAMP assay was slightly lower than that of the Q-PCR assay. However, the LAMP may be an attractive diagnostic method in conditions where sophisticated and expensive equipment is unavailable. This assay could be a powerful supplement to current diagnostic methods.

Prevalence of feline calicivirus in Korean cats determined by an improved real-time RT-PCR assay

  • Ji-Su Baek;Jong-Min Kim;Hye-Ryung Kim;Yeun-Kyung Shin;Oh-Kyu Kwon;Hae-Eun Kang;Choi-Kyu Park
    • Korean Journal of Veterinary Service
    • /
    • v.46 no.2
    • /
    • pp.123-135
    • /
    • 2023
  • Feline calicivirus (FCV) is considered the main viral pathogen of feline upper respiratory tract disease (URTD). The frequent mutations of field FCV strains result in the poor diagnostic sensitivity of previously developed molecular diagnostic assays. In this study, a more sensitive real-time reverse transcription-polymerase chain reaction (qRT-PCR) assay was developed for broad detection of currently circulating FCVs and comparatively evaluated the diagnostic performance with previously developed qRT-PCR assay using clinical samples collected from Korean cat populations. The developed qRT-PCR assay specifically amplified the FCV p30 gene with a detection limit of below 10 copies/reaction. The assay showed high repeatability and reproducibility, with coefficients of intra-assay and inter-assay variation of less than 2%. Based on the clinical evaluation using 94 clinical samples obtained from URTD-suspected cats, the detection rate of FCV by the developed qRT-PCR assay was 47.9%, which was higher than that of the previous qRT-PCR assay (43.6%). The prevalence of FCV determined by the new qRT-PCR assay in this study was much higher than those of previous Korean studies determined by conventional RT-PCR assays. Due to the high sensitivity, specificity, and accuracy, the new qRT-PCR assay developed in this study will serve as a promising tool for etiological and epidemiological studies of FCV circulating in Korea. Furthermore, the prevalence data obtained in this study will contribute to expanding knowledge about the epidemiology of FCV in Korea.

Comparison of PCR-RFLP and Real-Time PCR for Allelotyping of Single Nucleotide Polymorphisms of RRM1, a Lung Cancer Suppressor Gene (폐암 억제유전자 RRM1의 단일염기다형성 검사를 위한 PCR-RFLP법과 Real-Time PCR법의 유용성 비교)

  • Jeong, Ju-Yeon;Kim, Mi-Ran;Son, Jun-Gwang;Jung, Jong-Pil;Oh, In-Jae;Kim, Kyu-Sik;Kim, Young-Chul
    • Tuberculosis and Respiratory Diseases
    • /
    • v.62 no.5
    • /
    • pp.406-416
    • /
    • 2007
  • Background: Single nucleotide polymorphisms (SNPs), which consist of a substitution of a single nucleotide pair, are the most abundant form of genetic variations occurring with a frequency of approximately 1 per 1000 base pairs. SNPs by themselves do not cause disease but can predispose humans to disease, modify the extent or severity of the disease or influence the drug response and treatment efficacy. Single nucleotide polymorphisms (SNPs), particularly those within the regulatory regions of the genes often influence the expression levels and can modify the disease. Studies examining the associations between SNP and the disease outcome have provided valuable insight into the disease etiology and potential therapeutic intervention. Traditionally, the genotyping of SNPs has been carried out using polymerase chain reaction-restriction fragment length polymorphism(PCR-RFLP), which is a low throughput technique not amenable for use in large-scale SNP studies. Recently, TaqMan real-time PCR chemistry was adapted for use in allelic discrimination assays. This study validated the accuracy and utility of real-time PCR technology for SNPs genotyping Methods: The SNPs in promoter sequence (-37 and -524) of lung cancer suppressor gene, RRM1 (ribonucleotide reductase M1 subunit) with the genomic DNA samples of 89 subjects were genotyped using both real-time PCR and PCR-RFLP. Results: The discordance rates were 2.2% (2 mismatches) in -37 and 16.3% (15 mismatches) in -524. Auto-direct sequencing of all the mismatched samples(17 cases) were in accord with the genotypes read by real-time PCR. In addition, 138 genomic DNAs were genotyped using real-time PCR in a duplicate manner (two separated assays). Ninety-eight percent of the samples showed concordance between the two assays. Conclusion: Real-time PCR allelic discrimination assays are amenable to high-throughput genotyping and overcome many of the problematic features associated with PCR-RFLP.

Development of Real-time PCR Assays for Detection of Dirofilaria immitis from Infected Dog Blood (심장사상충에 감염된 개의 혈액에서 심장사상충 유전자를 검출할 수 있는 실시간 중합효소연쇄반응 기법 개발)

  • Oh, In Young;Kim, Kyung Tae;Jun, Jin Hyun;Shin, Jae-Ho;Sung, Ho Joong
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.2
    • /
    • pp.88-93
    • /
    • 2016
  • Dirofilaria immitis is a filarial nematode parasite that causes cardiopulmonary dirofilariasis in dogs. The purpose of this study was the development of real-time PCR assays for efficient detection of D. immitis. The D. immitis-specific primers confirmed in our previous study and a newly designed TaqMan probe were used for quantitative diagnostics. First, SYBR Green real-time PCR was performed using the specific primers and serially diluted genomic DNA or plasmid DNA, and melting curve analyses were performed after amplification. The melting curve showed one specific peak in each of the genomic and plasmid DNA reactions, suggesting that the primers specifically amplify the D. immitis cytochrome c oxidase subunit I gene. Comparison of SYBR Green and TaqMan real-time PCR using serially diluted plasmid DNA showed higher efficiency and specificity with TaqMan real-time PCR. The real-time PCR assays developed in this study will provide improved diagnostic methods to overcome the limitations of conventional diagnostic tools and facilitate more rapid and accurate diagnoses.

Development of Enzymatic Recombinase Amplification Assays for the Rapid Visual Detection of HPV16/18

  • Ning Ding;Wanwan Qi;Zihan Wu;Yaqin Zhang;Ruowei Xu;Qiannan Lin;Jin Zhu;Huilin Zhang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.8
    • /
    • pp.1091-1100
    • /
    • 2023
  • Human papillomavirus (HPV) types 16 and 18 are the major causes of cervical lesions and are associated with 71% of cervical cancer cases globally. However, public health infrastructures to support cervical cancer screening may be unavailable to women in low-resource areas. Therefore, sensitive, convenient, and cost-efficient diagnostic methods are required for the detection of HPV16/18. Here, we designed two novel methods, real-time ERA and ERA-LFD, based on enzymatic recombinase amplification (ERA) for quick point-of-care identification of the HPV E6/E7 genes. The entire detection process could be completed within 25 min at a constant low temperature (35-43℃), and the results of the combined methods could be present as the amplification curves or the bands presented on dipsticks and directly interpreted with the naked eye. The ERA assays evaluated using standard plasmids carrying the E6/E7 genes and clinical samples exhibited excellent specificity, as no cross-reaction with other common HPV types was observed. The detection limits of our ERA assays were 100 and 101 copies/µl for HPV16 and 18 respectively, which were comparable to those of the real-time PCR assay. Assessment of the clinical performance of the ERA assays using 114 cervical tissue samples demonstrated that they are highly consistent with real-time PCR, the gold standard for HPV detection. This study demonstrated that ERA-based assays possess excellent sensitivity, specificity, and repeatability for HPV16 and HPV18 detection with great potential to become robust diagnostic tools in local hospitals and field studies.

Comparison of Two PCR Assays for Trichomonas vaginalis

  • Noh, Chang-Suk;Kim, Sang-Su;Park, Sung-Yul;Moon, Hong-Sang;Hong, Yeonchul;Ryu, Jae-Sook
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.1
    • /
    • pp.27-31
    • /
    • 2019
  • PCR is known to be the most sensitive method for diagnosing Trichomonas vaginalis infections. This study aimed to compare the sensitivity of a PCR assay for trichomoniasis (HY-PCR) developed in Hanyang University with the use of a Seeplex Ace Detection $Kit^{(R)}$, using urine collected from four Korean men with prostatic disease. Overall, HY-PCR was more sensitive than the Seeplex Kit. The use of Chelex 100 is recommended for DNA isolation in order to increase the sensitivity of the PCR test.

Single-tube nested reverse transcription-polymerase chain reaction for simultaneous detection of genotyping of porcine reproductive and respiratory syndrome virus without DNA carryover contamination (DNA 교차오염 방지기능이 있는 single-tube nested reverse transcription-polymerase chain reaction을 이용한 돼지생식기호흡기증후군바이러스 유전형 감별진단)

  • Jeong, Pil-Soo;Park, Su-Jin;Kim, Eun-Mi;Park, Ji-Young;Park, Yu-Ri;Kang, Dae-Young;Cha, Hyun-Ouk;Lee, Kyoung-Ki;Kim, Seong-Hee;Park, Choi-Kyu
    • Korean Journal of Veterinary Service
    • /
    • v.39 no.2
    • /
    • pp.107-116
    • /
    • 2016
  • In the study, we developed and evaluated a uracil N-glycosylase (UNG)-supplemented single-tube nested reverse transcription-polymerase chain reaction (UsnRT-PCR) assay that can carried out first-round RT-PCR and second-round nested PCR in a reaction tube without reaction tube opening and can simultaneously detect EU- and NA-PRRSV. The UsnRT-PCR confirmed to have a preventing ability of mis-amplification by contamination of pre-amplified PRRSV DNA from previous UsnRT-PCR. Primer specificities were evaluated with RNAs extracted from 8 viral strains and our results revealed that the primers had a high specificity for both genotypes of PRRSV. The sensitivity of the UsnRT-PCR was 0.1 $TCID_{50}$/0.1 mL for EU- or NA-PRRSV, respectively, which is comparable to that of previously reported real time RT-PCR (RRT-PCR). Clinical evaluation on 110 field samples (60 sera and 50 lung tissues) by the UsnRT-PCR and the RRT-PCR showed that detection rates of the UsnRT-PCR was 70% (77/110), and was relatively higher than that of the RRT-PCR (69.1%, 76/110). The percent positive or negative agreement of the UsnRT-PCR compared to RRT-PCR was 96.1% (73/76) or 90.9% (30/33), showing that the test results of both assays may be different for some clinical samples. Therefore, it is recommend that diagnostic laboratory workers use the two diagnostic assays for the correct diagnosis for the relevant samples in the swine disease diagnostic laboratories. In conclusion, the UsnRT-PCR assay can be applied for the rapid, and reliable diagnosis of PRRSV without concerns about preamplified DNA carryover contamination that can occurred in PCR process in the swine disease diagnostic laboratories.