DOI QR코드

DOI QR Code

The Current Incidence of Viral Disease in Korean Sweet Potatoes and Development of Multiplex RT-PCR Assays for Simultaneous Detection of Eight Sweet Potato Viruses

  • Kwak, Hae-Ryun (Crop Protection Division, National Academy of Agricultural Science) ;
  • Kim, Mi-Kyeong (Crop Protection Division, National Academy of Agricultural Science) ;
  • Shin, Jun-Chul (Crop Protection Division, National Academy of Agricultural Science) ;
  • Lee, Ye-Ji (Crop Protection Division, National Academy of Agricultural Science) ;
  • Seo, Jang-Kyun (Crop Protection Division, National Academy of Agricultural Science) ;
  • Lee, Hyeong-Un (Bioenergy Crop Research Center, National Institute of Crop Science) ;
  • Jung, Mi-Nam (Bioenergy Crop Research Center, National Institute of Crop Science) ;
  • Kim, Sun-Hyung (Department of Environmental Horticulture, University of Seoul) ;
  • Choi, Hong-Soo (Crop Protection Division, National Academy of Agricultural Science)
  • Received : 2014.04.01
  • Accepted : 2014.09.16
  • Published : 2014.12.01

Abstract

Sweet potato is grown extensively from tropical to temperate regions and is an important food crop worldwide. In this study, we established detection methods for 17 major sweet potato viruses using single and multiplex RT-PCR assays. To investigate the current incidence of viral diseases, we collected 154 samples of various sweet potato cultivars showing virus-like symptoms from 40 fields in 10 Korean regions, and analyzed them by RT-PCR using specific primers for each of the 17 viruses. Of the 17 possible viruses, we detected eight in our samples. Sweet potato feathery mottle virus (SPFMV) and sweet potato virus C (SPVC) were most commonly detected, infecting approximately 87% and 85% of samples, respectively. Furthermore, Sweet potato symptomless virus 1 (SPSMV-1), Sweet potato virus G (SPVG), Sweet potato leaf curl virus (SPLCV), Sweet potato virus 2 ( SPV2), Sweet potato chlorotic fleck virus (SPCFV), and Sweet potato latent virus (SPLV) were detected in 67%, 58%, 47%, 41%, 31%, and 20% of samples, respectively. This study presents the first documented occurrence of four viruses (SPVC, SPV2, SPCFV, and SPSMV-1) in Korea. Based on the results of our survey, we developed multiplex RT-PCR assays for simple and simultaneous detection of the eight sweet potato viruses we recorded.

Keywords

References

  1. Abad, J. A., Conkling, M. A. and Moyer, J. W. 1992. Comparison of the capsid protein cistron from serologically distinct strains of Sweet potato feathery mottle virus (SPFMV). Arch. Virol. 126:147-157. https://doi.org/10.1007/BF01309691
  2. Adams, M. J., Zerbini, F. M., French, R., Rabenstein, F., Stenger, D. C., Valkonen, J. P. T. in Virus Taxonomy, ed. by King, A. M. Q., Lefkowitz, E. Adams, M. J. and Carstens, E. B. 2011. 9th Report of the International Committee for Taxonomy of Viruses. Elsevier Academic Press, San Diego. pp 1069-1089.
  3. Aritua, V., Barg, E., Gibson, R. W., Adipala, E. and Vetten, H. J. 2007. Sequence analysis of the entire RNA genome of Sweet potato chlorotic fleck virus reveals that it belongs to a distinct carlavirus species. Arch. Virol. 152:813-818. https://doi.org/10.1007/s00705-006-0891-z
  4. Ateka, E. M., Barg, E., Njeru, R. W., Thompson, G. and Vetten, H. J. 2007. Biological and molecular variability among geographically diverse isolate of Sweet potato virus 2. Arch. Virol. 152:479-488. https://doi.org/10.1007/s00705-006-0879-8
  5. Brunt, A. A., Crabtree, K., Dallwitz, M. J., Gibbs, A. J. and Watson, L. 1996. Viruses of Plants. Descriptions and Lists from the VIDE Database. CAB International, Wallingford, UK.
  6. Clark, C. A., Davis, J. A., Abad, J. A., Cuellar, W. J., Fuentes, S., Kreuze, J. F., Gibson, R. W., Mukasa, S. B., Tugume, A. K., Tairo, F. and Valkonen, J. P. T. 2012. Sweetpotato viruses: 15 years of progress on understanding and managing complex diseases. Plant Dis. 96:168-185. https://doi.org/10.1094/PDIS-07-11-0550
  7. Gibson, R. W., Mpembe, I., Alicai, T., Carey, E. E., Mwanga, R. O. M., Seal, S. E. and Vetten, H. J. 1998. Symptoms, aetiology and serological analysis of sweet potato virus disease in Uganda. Plant Pathol. 47:95-102. https://doi.org/10.1046/j.1365-3059.1998.00196.x
  8. Gutierrez, D. L., Fuentes, S. and Salazar, L. F. 2003. Sweet potato virus disease (SPVD): Distribution, incidence, and effect on sweet potato yield in Peru. Plant Dis. 87:297-302. https://doi.org/10.1094/PDIS.2003.87.3.297
  9. Ha, C., Revill, P., Harding, R. M., Vu, M. and Dale, J. L. 2008. Identification and sequence analysis of potyviruses infecting crops in Vietnam. Arch. Virol. 153:45-60. https://doi.org/10.1007/s00705-007-1067-1
  10. Hahn, S. K. 1979. Effect of virus (SPDV) on growth and yield of sweet potato. Exp. Agric. 15:253-256. https://doi.org/10.1017/S0014479700010310
  11. Karyeija, R. F., Kreuze, J. F., Gibson, R. W. and Valkonen, J. P. T. 2000. Synergistic interactions of a potyvirus and a phloemlimited crinivirus in sweetpotato cultivars. Virology 269:26-36. https://doi.org/10.1006/viro.1999.0169
  12. Kreuze, J. F., Karyeija, R. F., Gibson, R. W. and Valkonen, J. P. T. 2000. Comparisons of coat protein gene sequences show that East African isolates of Sweet potato feathery mottle virus form a genetically distinct group. Arch. Virol. 145:567-574. https://doi.org/10.1007/s007050050047
  13. Kreuze, J. F., Perez, A., Untiveros, M., Quispe, D., Fuentes, S., Barker, I. and Simon, R. 2009. Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: A generic method for discovery and sequencing of viruses. Virology 388:1-7. https://doi.org/10.1016/j.virol.2009.03.024
  14. Kwak, H. R., Kim, M. K., Jung, M. N., Lee, S. H., Park, J. W., Kim, K. H. and Choi, H. S. 2006. Virus diseases incidences of sweet potato in Korea. Plant Pathol. J. 22:239-247. https://doi.org/10.5423/PPJ.2006.22.3.239
  15. Kwak, H. R., Kim, M. K., Jung, M. N., Lee, S. H., Park, J. W., Kim, K. H. Ko, S. J. and Choi H. S. 2007. Genetic diversity of Sweet potato feathery mottle virus from sweet potatoes in Korea. Plant Pathol. J. 23:13-21. https://doi.org/10.5423/PPJ.2007.23.1.013
  16. Kwak, H. R., Kim, M. K., Nam, M., Kim, J. S., Kim, K. H., Cha, B. and Choi, H. S. 2013. Genetic compositions of Broad bean wilt virus 2 infecting red pepper in Korea. Plant Pathol. J. 29:274-284. https://doi.org/10.5423/PPJ.OA.12.2012.0190
  17. Li. F., Xu, D., Abad, J. and Li, R. 2012a. Phyogenetic relationships of closely related potyviruses infecting sweet potato determined by genomic characterization of Sweet potato virus G and Sweet potato virus 2. Virus Genes 45:118-125. https://doi.org/10.1007/s11262-012-0749-2
  18. Li, F., Zuo, R., Abad, J., Xu, D., Bao, G. and Li, R. 2012b. Simultaneous detection and differentiation of four closely related sweet potato potyviruses by a multiplex one-step RT-PCR. Journal of Virological Methods 186:161-166 https://doi.org/10.1016/j.jviromet.2012.07.021
  19. Mukasa, S. B., Rubaihayo, P. R. and Valkonen, J. P. T. 2003. Sequence variability within the 3'-proximal part of the Sweet potato mild mottle virus genome. Arch. Virol. 148:487-496. https://doi.org/10.1007/s00705-002-0930-3
  20. Mukasa, S. B., Rubaihayo, P. R. and Valkonen, J. P. T. 2006. Interactions between a crinivirus, an ipomovirus and a potyvirus in coinfected sweetpotato plants. Plant Pathol. 55:458-467. https://doi.org/10.1111/j.1365-3059.2006.01350.x
  21. Opiyo, S., Ateka, E., Owuor, P., Manguro, L. and Miano, D. 2010. Development of a multiplex PCR technique for simultaneous detection of Sweet potato feathery mottle virus and Sweet potato chlorotic stunt virus. Journal of Plant Pathology 92:363-366
  22. Qin, Y., Zhang, Z., Qiao, Q., Zhang, D., Tian, Y. and Wang, Y. 2013. Molecular variability of Sweet potato chlorotic stunt virus (SPCSV) and five potyviruses infecting sweet potato in China. Arch Virol. 158:491-495. https://doi.org/10.1007/s00705-012-1503-8
  23. Rannali, M., Czekaj, V., Jones R. A. C., Fletcher, J. D., Davis, R. I., Mu, L. and Valkonen, J. P. T. 2009. Molecular characterization of Sweet potato feathery mottle virus (SPFMV) isolates from Easter Island, French Polynesia, New Zealand and southern Africa. Plant Dis. 93:933-939. https://doi.org/10.1094/PDIS-93-9-0933
  24. Rodriguez Pardina, P. E., Bejerman, N., Luque, A. V. and Di Feo, L. 2012. Complete nucleotide sequence of an Argentinean isolate of Sweet potato virus G. Virus Genes 45:593-595. https://doi.org/10.1007/s11262-012-0784-z
  25. Rossel, H. W. and Thottappilly, G. 1988. Complex virus diseases of sweet potato. In: Exploration, maintenance, and utilization of sweet potato genetic resources. Report of 1st Sweet Potato Planning Conference. 1987. International Potato Centre, Lima, Peru.
  26. Rukarwa, R. J., Mashingaidze, A. B., Kyamanywa, S. and Mukasa, S. B. 2010. Detection and elimination of sweetpotato viruses. Afr. Crop Sci. J. 18:223-233.
  27. Untiveros, M., Fuentes, S. and Salazar, L. F. 2007. Synergistic interaction of Sweet potato chlorotic stunt virus (Crinivirus) with carla-, cucumo-, ipomo-, and potyviruses infecting sweet potato. Plant Dis. 91:669-676. https://doi.org/10.1094/PDIS-91-6-0669
  28. Untiveros, M., Fuentes, S. and Kreuze, J. 2008. Molecular variability of sweet potato feathery mottle virus and other potyviruses infecting sweet potato in Peru. Arch. Virol. 153:473-483. https://doi.org/10.1007/s00705-007-0019-0
  29. Wang, M., Abad, J., Fuentes, S. and Li, R. 2013. Complete genome sequence of the original Taiwanese isolate of Sweet potato latent virus and its relationship to other potyviruses infecting sweet potato. Arch. Virol. 158:2189-2192. https://doi.org/10.1007/s00705-013-1705-8
  30. Yun, W. S., Lee, Y. H. and Kim, K. H. 2002. First report of Sweet potato latent virus and Sweet potato chlorotic stunt virus isolated from sweet potato in Korea. Plant Pathol. J. 18:126-129. https://doi.org/10.5423/PPJ.2002.18.3.126

Cited by

  1. Seed transmission ofSweet potato leaf curl virusin sweet potato (Ipomoea batatas) vol.64, pp.6, 2015, https://doi.org/10.1111/ppa.12366
  2. Genome characterization of sweet potato symptomless virus 1: a mastrevirus with an unusual nonanucleotide sequence vol.162, pp.9, 2017, https://doi.org/10.1007/s00705-017-3396-z
  3. Mixed Infections of Four Viruses, the Incidence and Phylogenetic Relationships of Sweet Potato Chlorotic Fleck Virus (Betaflexiviridae) Isolates in Wild Species and Sweetpotatoes in Uganda and Evidence of Distinct Isolates in East Africa vol.11, pp.12, 2016, https://doi.org/10.1371/journal.pone.0167769
  4. Molecular Characterization of Five Potyviruses Infecting Korean Sweet Potatoes Based on Analyses of Complete Genome Sequences vol.31, pp.4, 2015, https://doi.org/10.5423/PPJ.OA.04.2015.0072
  5. Development of a Multiplex PCR Method to Detect Fungal Pathogens for Quarantine on Exported Cacti vol.32, pp.1, 2016, https://doi.org/10.5423/PPJ.NT.09.2015.0184
  6. ) Associated with Blight Disease of Ipomoea batatas in Korea vol.45, pp.3, 2017, https://doi.org/10.5941/MYCO.2017.45.3.129
  7. Recent Advances on the Multiplex Molecular Detection of Plant Viruses and Viroids vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.02087