• 제목/요약/키워드: PCR assay

Search Result 2,029, Processing Time 0.033 seconds

Detection of Xanthomonas axonopodis pv. glycines and Survey on Seed Contamination in Soybean Seeds Using PCR Assay (PCR Assay 이용 콩 종자에서 Xanthomonas axonopodis pv. glycines 검출 및 종자오염 조사)

  • Hong, Sung-Jun;Hong, Yeon-Kyu;Lee, Bong-Choon;Lim, Mi-Jung;Yoon, Young-Nam;Hwang, Jae-Bok;Song, Seok-Bo;Park, Sung-Tae
    • Research in Plant Disease
    • /
    • v.13 no.3
    • /
    • pp.145-151
    • /
    • 2007
  • Xanthomonas axonopodis pv. glycines is the causal agent of bacterial pustule of soybean(Glycine max. (L.) Merr), which is one of the most prevalent bacterial diseases in Korea. In this study, Polymerase Chain Reaction (PCR) assay was applied to detect Xanthomonas axonopodis pv. glycines and to survey on seed contamination in 36 soybean cultivars of Korea. And we have to compare PCR assay with dilution-plating assay of detection and identification. We confirmed detection of pathogen from artificial infected seeds and natural Infected seeds using PCR assay. This assay gave results similar to a seed-wash dilution plating assay and proved more effective than classical methods. Results of survey on seed contamination by X. axonopodis pv. glycines from 36 cultivar seeds showed that the pathogen was detected from Pungsan-namulkong, Mallikong, Taekwangkong, Daemangkong, Ajukkarikong using PCR assay. Therefore, The PCR assay provides a sensitive, rapid tool for the specific detection of X. axonopodis pv. glycines in soybean seeds.

Rapid detection and quantification of porcine circovirus type 2 (PCV 2) DNA in Real-time PCR (Real-time PCR을 이용한 돼지써코바이러스 감염증 진단법 연구)

  • Kim, Eun-Gyeong;Hwang, Bo-Won;Lee, Jong-Min;Son, Byeong-Guk;Park, Ho-Jung;Kim, Tho-Kyoung
    • Korean Journal of Veterinary Service
    • /
    • v.32 no.4
    • /
    • pp.299-306
    • /
    • 2009
  • Assay for the detection and quantification of porcine circovirus type 2 (PCV 2) with the real-time PCR were developed. TaqMan probe real-time using a set of primer/probe was developed for detection of PCV 2. In this study we applied real-time PCR assay to 320 samples, collected from pig farms. In 151 of 320 samples, PCV 2 DNA was detected by conventional PCR assay. All samples positive for PCV 2 DNA in conventional PCR assay were also positive in Real-time PCR assay, but 69 of 169 samples that tested negative for PCV 2 DNA in conventional assay were tested positive in TaqMan probe real-time PCR assay. The test of TaqMan probe real-time PCR resulted in detection and quantification limits of 101 copies per sample. TaqMan probe real-time PCR assay increased the number of samples in which PCV 2 was detected by 21%. TaqMan probe real-time PCR assay is very efficient method in contrast to the conventinal PCR, becoming increasingly important method for gene analysis.

Prevalence of feline calicivirus in Korean cats determined by an improved real-time RT-PCR assay

  • Ji-Su Baek;Jong-Min Kim;Hye-Ryung Kim;Yeun-Kyung Shin;Oh-Kyu Kwon;Hae-Eun Kang;Choi-Kyu Park
    • Korean Journal of Veterinary Service
    • /
    • v.46 no.2
    • /
    • pp.123-135
    • /
    • 2023
  • Feline calicivirus (FCV) is considered the main viral pathogen of feline upper respiratory tract disease (URTD). The frequent mutations of field FCV strains result in the poor diagnostic sensitivity of previously developed molecular diagnostic assays. In this study, a more sensitive real-time reverse transcription-polymerase chain reaction (qRT-PCR) assay was developed for broad detection of currently circulating FCVs and comparatively evaluated the diagnostic performance with previously developed qRT-PCR assay using clinical samples collected from Korean cat populations. The developed qRT-PCR assay specifically amplified the FCV p30 gene with a detection limit of below 10 copies/reaction. The assay showed high repeatability and reproducibility, with coefficients of intra-assay and inter-assay variation of less than 2%. Based on the clinical evaluation using 94 clinical samples obtained from URTD-suspected cats, the detection rate of FCV by the developed qRT-PCR assay was 47.9%, which was higher than that of the previous qRT-PCR assay (43.6%). The prevalence of FCV determined by the new qRT-PCR assay in this study was much higher than those of previous Korean studies determined by conventional RT-PCR assays. Due to the high sensitivity, specificity, and accuracy, the new qRT-PCR assay developed in this study will serve as a promising tool for etiological and epidemiological studies of FCV circulating in Korea. Furthermore, the prevalence data obtained in this study will contribute to expanding knowledge about the epidemiology of FCV in Korea.

Development of Non-Invasive Fecal PCR Assay for Detecting the Helicobacter Species Infection in Dogs (개의 Helicobacter 균속 감염 진단을 위한 비 침습적 분변 PCR 분석법)

  • Cheol-Yong Hwang;Hwa-Young Youn;Hong-Ryul Han
    • Journal of Veterinary Clinics
    • /
    • v.19 no.3
    • /
    • pp.295-298
    • /
    • 2002
  • This study was conducted to develope noninvasive fecal PCR assay for detecting the Helicobacter species in dogs. From the DNA isolated from fecal samples, and a region of the 16S rRNA gene conserved among Helicobacter spp. was amplified In comparison with gastric biopsy test, the fecal PCR assay showed high specificity(100%) and sensitivity(96%). The prevalence of Helicobacter spp. infection in privately owned pet dogs in Korea detemined by the fecal PCR assay was 72.1%. the fecal PCR assay determined in this study can a new noninvasive test detecting Helicobacter spp. infection in dogs.

Detection of Salmonella typhi by Loop-mediated Isothermal Amplification Assay

  • Jo, Yoon-Kyung;Lee, Chang-Yeoul
    • Biomedical Science Letters
    • /
    • v.14 no.2
    • /
    • pp.115-118
    • /
    • 2008
  • Salmonella typhi is frequent causes of foodborne illness and its detection is important for monitoring disease progression. In this study, by using general PCR and novel LAMP (Loop Mediated Isothermal Amplification) assay, we evaluated the usefulness of LAMP assay for detection of Salmonella typhi. In this LAMP assay, forward inner primer (FIP) and back inner primer (BIP) was specially designed for recognizing target invA gene. Target DNA was amplified and visualized as ladder-like pattern of bands on agarose gel within 60 min under isothermal conditions at $65^{\circ}C$. When the sensitivity and reproducibility of LAMP were compared to general PCR, there was no difference of reproducibility but sensitivity of LAMP assay was more efficient than PCR (the detection limit of LAMP assay was 30 fg, while the PCR assay was 3 pg). These results indicate that the LAMP assay is a potential and valuable means for detection of Salmonella typhi, especially for its rapidity, simplicity and low cost.

  • PDF

Development of a real-time polymerase chain reaction assay for reliable detection of a novel porcine circovirus 4 with an endogenous internal positive control

  • Kim, Hye-Ryung;Park, Jonghyun;Park, Ji-Hoon;Kim, Jong-Min;Baek, Ji-Su;Kim, Da-Young;Lyoo, Young S.;Park, Choi-Kyu
    • Korean Journal of Veterinary Service
    • /
    • v.45 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • A novel porcine circovirus 4 (PCV4) was recently identified in Chinese and Korean pig herds. Although several conventional polymerase chain reaction (cPCR) and real-time PCR (qPCR) assays were used for PCV4 detection, more sensitive and reliable qPCR assay is needed that can simultaneously detect PCV4 and internal positive control (IPC) to avoid false-negative results. In the present study, a duplex qPCR (dqPCR) assay was developed using primers/probe sets targeting the PCV4 Cap gene and pig (glyceraldehyde-3-phosphate dehydrogenase) GAPDH gene as an IPC. The developed dqPCR assay was specifically detected PCV4 but not other PCVs and porcine pathogens, indicating that the newly designed primers/probe set is specific to the PCV4 Cap gene. Furthermore, GAPDH was stably amplified by the dqPCR in all tested viral and clinical samples containing pig cellular materials, indicating the high reliability of the dqPCR assay. The limit of detection of the assay 5 copies of the target PCV4 genes, but the sensitivity of the assay was higher than that of the previously described assays. The assay demonstrated high repeatability and reproducibility, with coefficients of intra-assay and inter-assay variation of less than 1.0%. Clinical evaluation using 102 diseased pig samples from 18 pig farms showed that PCV4 circulated in the Korean pig population. The detection rate of PCV4 obtained using the newly developed dqPCR was 26.5% (27/102), which was higher than that obtained using the previously described cPCR and TaqMan probe-based qPCR and similar to that obtained using the previously described SYBR Green-based qPCR. The dqPCR assay with IPC is highly specific, sensitive, and reliable for detecting PCV4 from clinical samples, and it will be useful for etiological diagnosis, epidemiological study, and control of the PCV4 infections.

Quantitative Detection of Residual E. coli Host Cell DNA by Real-Time PCR

  • Lee, Dong-Hyuck;Bae, Jung-Eun;Lee, Jung-Hee;Shin, Jeong-Sup;Kim, In-Seop
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.10
    • /
    • pp.1463-1470
    • /
    • 2010
  • E. coli has long been widely used as a host system for the manufacture of recombinant proteins intended for human therapeutic use. When considering the impurities to be eliminated during the downstream process, residual host cell DNA is a major safety concern. The presence of residual E. coli host cell DNA in the final products is typically determined using a conventional slot blot hybridization assay or total DNA Threshold assay. However, both the former and latter methods are time consuming, expensive, and relatively insensitive. This study thus attempted to develop a more sensitive real-time PCR assay for the specific detection of residual E. coli DNA. This novel method was then compared with the slot blot hybridization assay and total DNA Threshold assay in order to determine its effectiveness and overall capabilities. The novel approach involved the selection of a specific primer pair for amplification of the E. coli 16S rRNA gene in an effort to improve sensitivity, whereas the E. coli host cell DNA quantification took place through the use of SYBR Green I. The detection limit of the real-time PCR assay, under these optimized conditions, was calculated to be 0.042 pg genomic DNA, which was much higher than those of both the slot blot hybridization assay and total DNA Threshold assay, where the detection limits were 2.42 and 3.73 pg genomic DNA, respectively. Hence, the real-time PCR assay can be said to be more reproducible, more accurate, and more precise than either the slot blot hybridization assay or total DNA Threshold assay. The real-time PCR assay may thus be a promising new tool for the quantitative detection and clearance validation of residual E. coli host cell DNA during the manufacturingprocess for recombinant therapeutics.

An Improved PCR-RFLP Assay for Detection and Genotyping of Asymptomatic Giardia lamblia Infection in a Resource-Poor Setting

  • Hawash, Yoursry;Ghonaim, M.M.;Al-Shehri, S.S.
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Laboratory workers, in resource-poor countries, still consider PCR detection of Giardia lamblia more costly and more time-consuming than the classical parasitological techniques. Based on 2 published primers, an in-house one-round touchdown PCR-RFLP assay was developed. The assay was validated with an internal amplification control included in reactions. Performance of the assay was assessed with DNA samples of various purities, 91 control fecal samples with various parasite load, and 472 samples of unknown results. Two cysts per reaction were enough for PCR detection by the assay with exhibited specificity (Sp) and sensitivity (Se) of 100% and 93%, respectively. Taking a published small subunit rRNA reference PCR test results (6%; 29/472) as a nominated gold standard, G. lamblia was identified in 5.9% (28/472), 5.2%, (25/472), and 3.6% (17/472) by PCR assay, $RIDA^{(R)}$ Quick Giardia antigen detection test (R-Biopharm, Darmstadt, Germany), and iodine-stained smear microscopy, respectively. The percent agreements (kappa values) of 99.7% (0.745), 98.9% (0.900), and 97.7% (0.981) were exhibited between the assay results and that of the reference PCR, immunoassay, and microscopy, respectively. Restriction digestion of the 28 Giardia-positive samples revealed genotype A pattern in 12 and genotype B profile in 16 samples. The PCR assay with the described format and exhibited performance has a great potential to be adopted in basic clinical laboratories as a detection tool for G. lamblia especially in asymptomatic infections. This potential is increased more in particular situations where identification of the parasite genotype represents a major requirement as in epidemiological studies and infection outbreaks.

A New and Rapid Testing Method for Drug Susceptibility of Mycobacterium leprae Using RT-PCR

  • Kim, Min-Joo;Lee, Ju-Hang;You, Ji-Chang
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.5
    • /
    • pp.685-689
    • /
    • 2000
  • Due to the uncultivable nature of Mycobacterium leprae in vitro, the fast, easy, and accurate measurement of the antimicrobial drug susceptibility of this microbe has been difficult. Conventional methods for such testing are subjective, cumbersome, and expensive in some cases. Here, the utility of a reverse transcriptase-PCR (RT-PCR)-based assay for testing was examined and compared with a Buddmeyer-type radiorespirometric assay. The susceptibility of M. leprae to rifampin was determined by probing the presence of M.leprae-specific 18 kDa gene mRNA in M. leprae-infected IC-21 macrophage cells after drug treatment. The results showed that, as the refampin concentration was increased, the 360-bp cDNA products generated by the RT-PCR-based assay decreased in a dose-dependent manner as in the drug susceptibility observed in the Buddmeyer-type assay. The drug susceptibility testing of M. leprae by the RT-PCR based assay was found to be not only faster but also nearly $10^4$-fold more sensitive than the Buddmeyer-type assay. Moreover, it was also found that, unlike the RT-PCR based assay, the same testing by a DNA-PCR resulted in no differences in the 360-bp signal, regardless of the rifampin concentrations used. Accordingly, these results demonstrated that the drug susceptibility of M. leprae can be determined effectively by an RT-PCR-based assay, thereby providing a new, fast, and sensitive testing method.

  • PDF

A Rapid PCR-based Assay for Detecting Hepatitis B Viral DNA Using GenSpector TMC-1000

  • Huh, Bum;Ha, Young-Ju;Oh, Jae-Tak;Park, Eun-Ha;Park, Jin-Su;Park, Hae-Joon
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.4
    • /
    • pp.143-147
    • /
    • 2006
  • A rapid PCR-based assay for detecting hepatitis B viral DNA(HBV DNA) in serum and plasma was developed using a new PCR instrument named GenSpector(TMC-1000, Samsung electronics). PCR was carried out using a chip-based platform, which enabled 50 PCR cycles with internal controls, and melting-curve analysis in 30 minutes. Verification of the amplified HBV DNA product and the internal control was based on specific melting temperatures(Tm) analysis, executed by the GenSpector software. Primers were designed within the region conserved through HBV genotypes A to F. The lower limit of detection was 840 copies/ml serum, conducted with serial dilutions of a HBV DNA positive control(ACCURUN 325 series 700, Boston Biomedica Inc.). The assay was also compared to another assay for HBV DNA(Versant HBV DNA 3.0 assay, Bayer HealthCare) for 200 samples(each 100 clinical negative and positive samples). The sensitivity and specificity were 100% matched. This rapid PCR-based assay is specific, reproducible, and enables qualitative detection of HBV DNA.