• Title/Summary/Keyword: PCC voltage variation

Search Result 12, Processing Time 0.025 seconds

Realtime Compensation of PCC Voltage Variation by Injection of Required Reactive Power in a Grid Connected Variable Speed Wind Turbine (계통 연계형 가변속 풍력발전기의 무효전력 주입을 통한 PCC 전압 변동량 실시간 보상)

  • Im, Ji-Hoon;Song, Seung-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.69-74
    • /
    • 2010
  • In a grid connected variable speed wind turbine, the PCC voltage and the wind power fluctuate as the wind velocity changed. And this voltage variation is changed due to location of PCC. This paper calculate the value of PCC voltage variation which is proportional to the product of the line impedance from the ideal generator to the PCC and the wind turbine output current. And to reduce this PCC voltage variation, this paper calculate the required reactive power analytically using the vector diagram method. Output reactive current is changed, if the reactive current is limited by inverter capacity or grid code have the margin of voltage variation. If the grid connected inverter is controlled by proposed algorithm, the PCC voltage variation is minimized though the wind turbine output change at random. To verify calculated voltage variation and required reactive power, this paper utilized Matlab and PSCAD/EMTDC simulation and real small wind turbine and power system in Sapsido, island in the Yellow Sea.

Simplified Wind Turbine Modeling and Calculation of PCC Voltage Variation according to Grid Connection Conditions (간략화된 풍력발전기 모델링과 계통연계 조건에 따른 PCC 전압 변동량 계산)

  • Im, Jl-Hoon;Song, Seung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2402-2409
    • /
    • 2009
  • This paper proposed a simple and helpful analysis model of voltage variation in order to predict the voltage variation at PCC (Point of Common Coupling), when a wind turbine is connected in an isolated grid. The PCC voltage flucuates when the wind turbine outputs active power to an isolated grid. This voltage variation is proportional to the product of the line impedance from the ideal generator to the PCC and the wind turbine output current. And It is different according as where wind turbine is connected. To solve the problem of voltage variation, this paper proposed the reactive power control. To verify the proposed analysis model, this paper utilized PSCAD/EMTDC Simulation and the field measurement data of the voltage variation during the wind power generation.

Analysis and Compensation of PCC Voltage Variations caused by Wind Turbine Power Fluctuations

  • Im, Ji-Hoon;Song, Seung-Ho;Kang, San
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.854-860
    • /
    • 2013
  • The voltage variation problem at the point of common coupling (PCC) in a grid-connected wind turbine is investigated. The voltage variation problem is one of the most frequent power quality issues for the grid connection of large amounts of input power in a weak grid. Through the simplified modeling of the wind turbine and power network, the magnitude of PCC voltage variation is calculated by using the equivalent circuit parameters and output power of the wind turbine. The required amount of reactive power that can compensate the voltage variation is also presented analytically by using the vector diagram method. The proposed calculation and compensation method of the PCC voltage variation is verified by computer simulations and experiments.

Control of PCC Voltage Variation by Reactive Power Compensation of Distributed Source (분산전원의 무효전력 보상을 통한 PCC 전압 변동 제어)

  • Han, Sanghun;Lim, Jong-ung;Han, Yu;Cho, Younghoon;Choe, Gyu-ha
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.180-181
    • /
    • 2017
  • Recently as distributed source has increased, the distribution system has changed from unidirectional power flow to bi-directional power flow. This power flow causes the PCC voltage variation, which can adversely affect voltage sensitive loads. In this paper, the relation between the active power, reactive power and PCC voltage of the distributed source is analyzed, and the PCC voltage control scheme by reactive power compensation is proposed in the distributed source itself. In addition, limitations and conditions according to the standard for interconnecting distributed resources are specified and verified through simulation.

  • PDF

Reduction of PCC Voltage Variation using Reactive Power Control of Grid Connected Wind Turbine (풍력발전기의 계통연계 시 무효전력 제어를 통한 PCC 전압변동 저감)

  • Im, Ji-Hoon;Song, Seung-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.203-205
    • /
    • 2009
  • 풍력발전기가 계통에 연계되어 유효전력이 출력되면 PCC의 전압이 변동하며, 이러한 전압변동은 풍력발전기 출력에 비례한다. 전압변동의 발생요인은 전원에서 PCC지점까지의 선로 등가 임피던스의 크기와 풍력발전기 출력 전류의 곱의 형태로 표현 된다. 이러한 전압변동은 무효전력의 공급으로 억제할 수 있으며 필요로 하는 무효전력량은 풍력발전기 출력량에 비례한다. 이를 검증하는 방안으로 삽시도의 계통을 바탕으로 PSCAD/EMTDC 시뮬레이션과 실측데이터를 활용하였다.

  • PDF

A Simple Prediction Model for PCC Voltage Variation Due to Active Power Fluctuation of a Grid Connected Wind Turbine

  • Kim, Sang-Jin;Seong, Se-Jin
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.85-92
    • /
    • 2009
  • This paper studies the method to predict voltage variation that can be presented in the case of operating a small-sized wind turbine in grid connection to the isolated small-sized power system. In order to do this, it makes up the simplified simulation model of the existing power plant connected to the isolated system, load, transformer, and wind turbine on the basis of PSCAD/EMTDC and compares them with the operating characteristics of the actual established wind turbine. In particular, it suggests a simplified model formed with equivalent impedance of the power system network including the load to analytically predict voltage variation at the connected point. It also confirms that the voltage variation amount calculated by the suggested method accords well with both simulation and actually measured data. The results can be utilized as a tool to ensure security and reliability in the stage of system design and preliminary investigation of a small-sized grid connected wind turbine.

Enhanced Reactive Power Sharing and Voltage Restoration in Islanded Microgrid

  • Pham, Minh-Duc;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.47-48
    • /
    • 2016
  • Parallel distributed generators (DGs) in the islanded micro-grid are normally controlled with the aid of the droop control scheme. However, the traditional droop control methods which use the P-${\omega}$ and Q-E curve to share power between DGs are still concerned to improve the accurate of reactive power sharing and variation of frequency and voltage at the point of common coupling (PCC). This paper proposes a control scheme to solve the limitation of microgrid in islanded operation such as reactive power sharing accuracy and PCC voltage and frequency restoring. In order to achieve the control objective, a secondary control is implemented with both central controller and local controller by using the low bandwidth communications. The effectiveness of the proposed control scheme is analyzed through the simulation.

  • PDF

Prediction Model for PCC Voltage Variation due to Active Power Fluctuation of Grid Connected Wind Turbine (풍력발전기의 계통연계 운전시 출력변동에 따른 PCC 전압 변동 예측모델)

  • Kim, Sang-Jin;Im, Ji-Hoon;Song, Seung-Ho;Seong, Se-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.298-300
    • /
    • 2008
  • 고립된 소규모 전력시스템에 소형 풍력발전기를 계통연계 운전할 때 나타날 수 있는 전압변동을 예측하기 위한 방법에 관해 연구하였다. 이를 위하여 고립된 계통에 연결된 기존발전소 및 부하, 변압기, 풍력발전기의 간략화된 시뮬레이션 모델을 PSCAD/EMTDC를 기반으로 구성하고 실제 설치된 풍력발전기의 운전 특성과 비교하였다. 특히, 연계점의 전압변동을 해석적으로 예측하기 위하여 전원측 등가 임피던스와 부하측 등가 임피던스로 구성된 간략화한 모델을 제안하였으며 제안된 방법으로 계산된 전압변동량이 시뮬레이션 및 실측 데이터와 잘 일치하는 것을 확인하였다. 이 결과는 소형 풍력발전기 계통연계 시스템 설계 및 사전검토 단계에서 안정성과 신뢰성을 확보 하기위한 도구로 활용될 수 있다.

  • PDF

Islanding Detection for a Micro-Grid based on the Instantaneous Active and Reactive Powers in the Time Domain (시간영역에서 순시 유효/무효전력을 이용한 마이크로그리드의 단독운전 판단)

  • Lee, Young-Gui;Kim, Yeon-Hee;Zheng, Tai-Ying;Kim, Tae-Hyun;Kang, Yong-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.22-27
    • /
    • 2012
  • Correct and fast detection of a micro-grid (MG) islanding is essential to the MG since operation, control and protection of the MG depend on an operating mode i.e., an interconnected mode or an islanding mode. When islanding occurs, the frequency of the point of common coupling (PCC) is not the nominal frequency during the transient state owing to the frequency rise or drop of generators in the MG. Thus, the active and reactive power calculated by the frequency domain based method such as Fourier Transform might contain some errors. This paper proposes an islanding detection algorithm for the MG based on the instantaneous active and reactive powers delivered to the dedicated line in the time domain. During the islanding mode, the instantaneous active and reactive powers delivered to the dedicated line are constants, which depend on the voltage of the PCC and the impedance of the dedicated line. In this paper, the instantaneous active and reactive powers are calculated in the time domain and used to detect islanding. The performance of the proposed algorithm is verified under various scenarios including islanding conditions, fault conditions and load variation using the PSCAD/EMTDC simulator. The results indicate that the algorithm successfully detects islanding for the MG.

Anti-islanding Detection Method for BESS Based on 3 Phase Inverter Using Negative-Sequence Current Injection (역상분 전류 주입을 적용한 3상 인버터 기반 BESS의 단독 운전 검출 방법)

  • Sin, Eun-Suk;Kim, Hyun-Jun;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.9
    • /
    • pp.1315-1322
    • /
    • 2015
  • This paper proposes an active islanding detection method for the BESS (Battery Energy Storage System) with 3-phase inverter which is connected to the AC grid. The proposed method adopts the DDSRF (Decoupled Double Synchronous Reference Frame) PLL (Phase Locked-Loop) so that the independent control of positive-sequence and negative-sequence current is successfully carried out using the detected phase angle information. The islanding state can be detected by sensing the variation of negative-sequence voltage at the PCC (Point of Common Connection) due to the injection of 2-3% negative-sequence current from the BESS. The proposed method provides a secure and rapid detection under the variation of negative-sequence voltage due to the sag and swell. The feasibility of proposed method was verified by computer simulations with PSCAD/EMTDC and experimental analyses with 5kW hardware prototype for the benchmark circuit of islanding detection suggested by IEEE 1547 and UL1741. The proposed method would be applicable for the secure detection of islanding state in the grid-tied Microgrid.