• Title/Summary/Keyword: PCA 교육

Search Result 28, Processing Time 0.023 seconds

Identifying Key Competencies Required for STEM Occupations (과학, 기술, 공학, 수학(STEM) 직종에 요구되는 핵심 역량 분석)

  • Jang, Hyewon
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.6
    • /
    • pp.781-792
    • /
    • 2018
  • In modern society, as technology develops and industry diversifies, students can choose from a variety of career paths. Since science, technology, engineering, and mathematics require a longer education and experience than other fields, it is important to design science education policies based on the competencies required for science, technology, engineering, and mathematics (STEM) occupations. This study explores the definition of science and technology manpower and STEM occupations and identifies core competencies of STEM occupations using standard job information operated and maintained by the US Department of Labor ($O^*NET$). We specially analyzed ratings of the importance of skills (35 ratings), knowledge (33 ratings), and work activities (41 ratings) conducting descriptive analysis and principal component analysis (PCA). As a result, core competencies of STEM occupations consist of STEM problem-solving competency, Management competency, Technical competency, Social service competency, Teaching competency, Design competency, Bio-chemistry competency, and Public service competency, which accounts for 70% of the total variance. This study can be a reference for setting the curriculum and educational goals in secondary and college education by showing the diversity of science and technology occupations and the competencies required for STEM occupations.

Comparison of the Mathematics Educational Values between Pre-service and In-service Elementary School Teachers (수학교육적 가치에 대한 예비 초등교사와 현직 초등교사의 인식 비교)

  • Yim, MinJae;Cho, SooYun;Pang, JeongSuk
    • Communications of Mathematical Education
    • /
    • v.34 no.3
    • /
    • pp.277-297
    • /
    • 2020
  • The purpose of this study was to identify and compare the mathematics educational values of pre-service and in-service elementary school teachers. For this purpose, we implemented a questionnaire investigating mathematics educational values and used principal component analysis which resulted in six components. These components were named as fun, problem-solving, representation, computation, ability, and explanation through systematic labeling processes. Both pre-service and in-service elementary school teachers considered problem-solving the most important and there was no statistical difference between the teacher groups. They also considered fun the least important and in-service elementary school teachers regarded it more important than pre-service counterparts did. All value components except explanation were regarded as important by in-service elementary school teachers, fourth-year pre-service teachers, and first-year pre-service teachers in order. The result of noticeable differences between pre-service and in-service elementary school teachers implies that actual teaching experience may affect teachers' mathematics educational values more than teacher preparation programs. Based on these findings, we need to discuss what should be regarded as important and worthwhile in teacher preparation programs to establish mathematics educational values for pre-service teachers. We also need to confirm whether the mathematics educational values by in-service elementary school teachers may be in line with what has been pursued in the national mathematics curriculum.

GIS-based Spatial Integration and Statistical Analysis using Multiple Geoscience Data Sets : A Case Study for Mineral Potential Mapping (다중 지구과학자료를 이용한 GIS 기반 공간통합과 통계량 분석 : 광물 부존 예상도 작성을 위한 사례 연구)

  • 이기원;박노욱;권병두;지광훈
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.2
    • /
    • pp.91-105
    • /
    • 1999
  • Spatial data integration using multiple geo-based data sets has been regarded as one of the primary GIS application issues. As for this issue, several integration schemes have been developed as the perspectives of mathematical geology or geo-mathematics. However, research-based approaches for statistical/quantitative assessments between integrated layer and input layers are not fully considered yet. Related to this niche point, in this study, spatial data integration using multiple geoscientific data sets by known integration algorithms was primarily performed. For spatial integration by using raster-based GIS functionality, geological, geochemical, geophysical data sets, DEM-driven data sets and remotely sensed imagery data sets from the Ogdong area were utilized for geological thematic mapping related by mineral potential mapping. In addition, statistical/quantitative information extraction with respective to relationships among used data sets and/or between each data set and integrated layer was carried out, with the scope of multiple data fusion and schematic statistical assessment methodology. As for the spatial integration scheme, certainty factor (CF) estimation and principal component analysis (PCA) were applied. However, this study was not aimed at direct comparison of both methodologies; whereas, for the statistical/quantitative assessment between integrated layer and input layers, some statistical methodologies based on contingency table were focused. Especially, for the bias reduction, jackknife technique was also applied in PCA-based spatial integration. Through the statistic analyses with respect to the integration information in this case study, new information for relationships of integrated layer and input layers was extracted. In addition, influence effects of input data sets with respect to integrated layer were assessed. This kind of approach provides a decision-making information in the viewpoint of GIS and is also exploratory data analysis in conjunction with GIS and geoscientific application, especially handing spatial integration or data fusion with complex variable data sets.

Hazardous and Noxious Substances (HNSs) Styrene Detection Using Spectral Matching and Mixture Analysis Methods (분광정합 및 혼합 분석 방법을 활용한 위험·유해물질 스티렌 탐지)

  • Jae-Jin Park;Kyung-Ae Park;Tae-Sung Kim;Moonjin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.spc
    • /
    • pp.1-10
    • /
    • 2022
  • As the volume of marine hazardous and noxious substances (HNSs) transported in domestic and overseas seas increases, the risk of HNS spill accidents is gradually increasing. HNS leaked into the sea causes destruction of marine ecosystems, pollution of the marine environment, and human casualties. Secondary accidents accompanied by fire and explosion are possible. Therefore, various types of HNSs must be rapidly detected, and a control strategy suitable for the characteristics of each substance must be established. In this study, the ground HNS spill experiment process and application result of detection algorithms were presented based on hyperspectral remote sensing. For this, styrene was spilled in an outdoor pool in Brest, France, and simultaneous observation was performed through a hyperspectral sensor. Pure styrene and seawater spectra were extracted by applying principal component analysis (PCA) and the N-Findr method. In addition, pixels in hyperspectral image were classified with styrene and seawater by applying spectral matching techniques such as spectral distance similarity (SDS), spectral correlation similarity (SCS), spectral similarity value (SSV), and spectral angle mapper (SAM). As a result, the SDS and SSV techniques showed good styrene detection results, and the total extent of styrene was estimated to be approximately 1.03 m2. The study is expected to play a major role in marine HNS monitoring.

Transfer Learning using Multiple ConvNet Layers Activation Features with Principal Component Analysis for Image Classification (전이학습 기반 다중 컨볼류션 신경망 레이어의 활성화 특징과 주성분 분석을 이용한 이미지 분류 방법)

  • Byambajav, Batkhuu;Alikhanov, Jumabek;Fang, Yang;Ko, Seunghyun;Jo, Geun Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.205-225
    • /
    • 2018
  • Convolutional Neural Network (ConvNet) is one class of the powerful Deep Neural Network that can analyze and learn hierarchies of visual features. Originally, first neural network (Neocognitron) was introduced in the 80s. At that time, the neural network was not broadly used in both industry and academic field by cause of large-scale dataset shortage and low computational power. However, after a few decades later in 2012, Krizhevsky made a breakthrough on ILSVRC-12 visual recognition competition using Convolutional Neural Network. That breakthrough revived people interest in the neural network. The success of Convolutional Neural Network is achieved with two main factors. First of them is the emergence of advanced hardware (GPUs) for sufficient parallel computation. Second is the availability of large-scale datasets such as ImageNet (ILSVRC) dataset for training. Unfortunately, many new domains are bottlenecked by these factors. For most domains, it is difficult and requires lots of effort to gather large-scale dataset to train a ConvNet. Moreover, even if we have a large-scale dataset, training ConvNet from scratch is required expensive resource and time-consuming. These two obstacles can be solved by using transfer learning. Transfer learning is a method for transferring the knowledge from a source domain to new domain. There are two major Transfer learning cases. First one is ConvNet as fixed feature extractor, and the second one is Fine-tune the ConvNet on a new dataset. In the first case, using pre-trained ConvNet (such as on ImageNet) to compute feed-forward activations of the image into the ConvNet and extract activation features from specific layers. In the second case, replacing and retraining the ConvNet classifier on the new dataset, then fine-tune the weights of the pre-trained network with the backpropagation. In this paper, we focus on using multiple ConvNet layers as a fixed feature extractor only. However, applying features with high dimensional complexity that is directly extracted from multiple ConvNet layers is still a challenging problem. We observe that features extracted from multiple ConvNet layers address the different characteristics of the image which means better representation could be obtained by finding the optimal combination of multiple ConvNet layers. Based on that observation, we propose to employ multiple ConvNet layer representations for transfer learning instead of a single ConvNet layer representation. Overall, our primary pipeline has three steps. Firstly, images from target task are given as input to ConvNet, then that image will be feed-forwarded into pre-trained AlexNet, and the activation features from three fully connected convolutional layers are extracted. Secondly, activation features of three ConvNet layers are concatenated to obtain multiple ConvNet layers representation because it will gain more information about an image. When three fully connected layer features concatenated, the occurring image representation would have 9192 (4096+4096+1000) dimension features. However, features extracted from multiple ConvNet layers are redundant and noisy since they are extracted from the same ConvNet. Thus, a third step, we will use Principal Component Analysis (PCA) to select salient features before the training phase. When salient features are obtained, the classifier can classify image more accurately, and the performance of transfer learning can be improved. To evaluate proposed method, experiments are conducted in three standard datasets (Caltech-256, VOC07, and SUN397) to compare multiple ConvNet layer representations against single ConvNet layer representation by using PCA for feature selection and dimension reduction. Our experiments demonstrated the importance of feature selection for multiple ConvNet layer representation. Moreover, our proposed approach achieved 75.6% accuracy compared to 73.9% accuracy achieved by FC7 layer on the Caltech-256 dataset, 73.1% accuracy compared to 69.2% accuracy achieved by FC8 layer on the VOC07 dataset, 52.2% accuracy compared to 48.7% accuracy achieved by FC7 layer on the SUN397 dataset. We also showed that our proposed approach achieved superior performance, 2.8%, 2.1% and 3.1% accuracy improvement on Caltech-256, VOC07, and SUN397 dataset respectively compare to existing work.

The Performance Advancement of Power Analysis Attack Using Principal Component Analysis (주성분 분석을 이용한 전력 분석 공격의 성능 향상)

  • Kim, Hee-Seok;Kim, Hyun-Min;Park, Il-Hwan;Kim, Chang-Kyun;Ryu, Heui-Su;Park, Young-Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.6
    • /
    • pp.15-21
    • /
    • 2010
  • In the recent years, various researches about the signal processing have been presented to improve the performance of power analysis. Among these signal processing techniques, the research about the signal compression is not enough than a signal alignment and a noise reduction; even though that can reduce considerably the computation time for the power analysis. But, the existing compression method can sometimes reduce the performance of the power analysis because those are the unsophisticated method not considering the characteristic of the signal. In this paper, we propose the new PCA (principal component analysis)-based signal compression method, which can block the loss of the meaningful factor of the original signal as much as possible, considering the characteristic of the signal. Also, we prove the performance of our method by carrying out the experiment.

Detection of Toluene Hazardous and Noxious Substances (HNS) Based on Hyperspectral Remote Sensing (초분광 원격탐사 기반 위험·유해물질 톨루엔 탐지)

  • Park, Jae-Jin;Park, Kyung-Ae;Foucher, Pierre-Yves;Kim, Tae-Sung;Lee, Moonjin
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.623-631
    • /
    • 2021
  • The increased transport of marine hazardous and noxious substances (HNS) has resulted in frequent HNS spill accidents domestically and internationally. There are about 6,000 species of HNS internationally, and most of them have toxic properties. When an accidental HNS spill occurs, it can destroys the marine ecosystem and can damage life and property due to explosion and fire. Constructing a spectral library of HNS according to wavelength and developing a detection algorithm would help prepare for accidents. In this study, a ground HNS spill experiment was conducted in France. The toluene spectrum was determined through hyperspectral sensor measurements. HNS present in the hyperspectral images were detected by applying the spectral mixture algorithm. Preprocessing principal component analysis (PCA) removed noise and performed dimensional compression. The endmember spectra of toluene and seawater were extracted through the N-FINDR technique. By calculating the abundance fraction of toluene and seawater based on the spectrum, the detection accuracy of HNS in all pixels was presented as a probability. The probability was compared with radiance images at a wavelength of 418.15 nm to select abundance fractions with maximum detection accuracy. The accuracy exceeded 99% at a ratio of approximately 42%. Response to marine spills of HNS are presently impeded by the restricted access to the site because of high risk of exposure to toxic compounds. The present experimental and detection results could help estimate the area of contamination with HNS based on hyperspectral remote sensing.

Causes of Childhood Injuries Observed at the Emergency Rooms of Five Hospitals in Taegu (대구시내 종합병원 응급실에 찾아온 소아사고 환아의 사고원인)

  • Park, Jung-Han;Bae, Yeong-Sook
    • Journal of Preventive Medicine and Public Health
    • /
    • v.21 no.2 s.24
    • /
    • pp.224-237
    • /
    • 1988
  • To determine the causes of and related factors to childhood injuries, the emergency room records and inpatient medical records were reviewed for 4,849 injured children out of 15,790 pediatric patients(<15 years old) who visited the emergency rooms of 3 university hospitals and 2 general hospitals in Taegu from 1 January to 31 December 1987. Out of total injured children, 54.675 were 3-8 years old and the male to female ratio of the total injured children was about 2:1. The leading causes of injury were falls and slips (29.1%) and traffic accident(28.2%). The frequency of injury was higher in May-October than the rest of months and 51.6% of the injuries occurred between 15 and 20 o'clock. Falls and slips took place most frequently at the stairway(25.7%). The most common interpersonal violence was inflicted injuries(85.6%) and there were 11 child rapes. Dog bites accounted for 67.6% of all biting injuries and it occured 2.9 times more in male than in female. CO intoxication was the most common cause of poisoning (45.3%) and scalding accounted for 85.2% of all burns. Common places of drownings were river (32.2%), swimming pool (22.6%) and construction site(19.3%). To prevent childhood injuries, it is recommended to eliminate the hazardous environmental factors, to provide safe playgrounds, to educate the children for safety from kindergarten and the general public through mass communication, to establish a strict safety standard for houses, public buildings and facilities, and playgrounds.

  • PDF