DOI QR코드

DOI QR Code

Hazardous and Noxious Substances (HNSs) Styrene Detection Using Spectral Matching and Mixture Analysis Methods

분광정합 및 혼합 분석 방법을 활용한 위험·유해물질 스티렌 탐지

  • Jae-Jin Park (Department of Earth Science Education, Seoul National University) ;
  • Kyung-Ae Park (Department of Earth Science Education, Seoul National University) ;
  • Tae-Sung Kim (Korea Research Institute of Ships and Ocean Engineering) ;
  • Moonjin Lee (Korea Research Institute of Ships and Ocean Engineering)
  • 박재진 (서울대학교 지구과학교육과) ;
  • 박경애 (서울대학교 지구과학교육과) ;
  • 김태성 (선박해양플랜트연구소) ;
  • 이문진 (선박해양플랜트연구소 )
  • Received : 2022.10.13
  • Accepted : 2022.12.28
  • Published : 2022.12.31

Abstract

As the volume of marine hazardous and noxious substances (HNSs) transported in domestic and overseas seas increases, the risk of HNS spill accidents is gradually increasing. HNS leaked into the sea causes destruction of marine ecosystems, pollution of the marine environment, and human casualties. Secondary accidents accompanied by fire and explosion are possible. Therefore, various types of HNSs must be rapidly detected, and a control strategy suitable for the characteristics of each substance must be established. In this study, the ground HNS spill experiment process and application result of detection algorithms were presented based on hyperspectral remote sensing. For this, styrene was spilled in an outdoor pool in Brest, France, and simultaneous observation was performed through a hyperspectral sensor. Pure styrene and seawater spectra were extracted by applying principal component analysis (PCA) and the N-Findr method. In addition, pixels in hyperspectral image were classified with styrene and seawater by applying spectral matching techniques such as spectral distance similarity (SDS), spectral correlation similarity (SCS), spectral similarity value (SSV), and spectral angle mapper (SAM). As a result, the SDS and SSV techniques showed good styrene detection results, and the total extent of styrene was estimated to be approximately 1.03 m2. The study is expected to play a major role in marine HNS monitoring.

국내외 해상 위험·유해물질(Hazardous and Noxious Substances, HNS) 물동량이 증가함에 따라 HNS 유출 사고의 위험성이 점차 높아지고 있다. 해상에 유출된 HNS는 해양생태계 파괴를 비롯한 해양환경 오염 및 인명피해를 유발하며, 화재 및 폭발 등을 동반한 2차 사고 발생 가능성도 존재한다. 따라서 해상 HNS의 신속한 탐지와 각 물질 특성에 적합한 방제전략을 수립해야 한다. 본 연구에서는 초분광 원격탐사에 기반한 지상 HNS 유출 실험 과정 및 탐지 알고리즘 적용 결과를 제시하고자 한다. 이를 위해 프랑스 브레스트 지역의 야외 풀장에서 스티렌을 유출한 후 초분광 센서를 활용한 동시 관측을 수행하였다. 순수 스티렌 및 해수 스펙트럼은 주성분 분석(principal component analysis, PCA) 및 N-Findr 기법을 적용하여 추출하였으며, 또한 spectral distance similarity (SDS), spectral correlation similarity (SCS), spectral similarity value (SSV), spectral angle mapper (SAM)을 포함한 분광정합 기법을 적용하여 초분광 영상 내 화소들을 스티렌 및 해수로 분류하였다. 그 결과 SDS 및 SSV 기법이 우수한 스티렌 탐지 결과를 보여주었으며, 스티렌 총 면적은 약 1.03 m2로 추정되었다. 본 연구는 해상 HNS 모니터링에 주요 역할을 할 것으로 기대된다.

Keywords

Acknowledgement

본 논문은 2022년 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구(20150340, 위험유해물질(HNS)사고 관리기술 개발)이다.

References

  1. Angelliaume, S., B. Minchew, S. Chataing, P. Martineau, and V. Miegebielle(2017), Multifrequency radar imagery and characterization of hazardous and noxious substances at sea, IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, No. 5, pp. 3051-3066.  https://doi.org/10.1109/TGRS.2017.2661325
  2. Barnsley, M. J., J. J. Settle, M. A. Cutter, D. R. Lobb, and F. Teston(2004), The PROBA/CHRIS mission: A low-cost smallsat for hyperspectral multiangle observations of the earth surface and atmosphere, IEEE Transactions on Geoscience and Remote Sensing, Vol. 42 No. 7, pp. 1512-1520.  https://doi.org/10.1109/TGRS.2004.827260
  3. Boisot, O., S. Angelliaume, and C. A. Guerin(2018), Marine oil slicks quantification from L-band dual-polarization SAR imagery, IEEE Transactions on Geoscience and Remote Sensing, Vol. 57, No. 4, pp. 2187-2197. 
  4. Chang, C. I., C. C. Wu, W. Liu, and Y. C. Ouyang(2006), A new growing method for simplex-based endmember extraction algorithm, IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 10, pp. 2804-2819.  https://doi.org/10.1109/TGRS.2006.881803
  5. Chen, J., Z. Di, J. Shi, Y. Shu, Z. Wan, L. Song, and W. Zhang(2020), Marine oil spill pollution causes and governance: A case study of Sanchi tanker collision and explosion, Journal of Cleaner Production, Vol. 273, 122978, pp. 1-11. 
  6. Cho, S. J., D. J. Kim, and K. S. Choi(2013), Hazardous and noxious substances (HNS) risk assessment and accident prevention measures on domestic marine transportation, Journal of the Korean Society of Marine Environment and safety, Vol.19, No. 2, pp. 145-154.  https://doi.org/10.7837/kosomes.2013.19.2.145
  7. Dalla Mura, M., A. Villa, J. A. Benediktsson, J. Chanussot, and L. Bruzzone(2010), Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis, IEEE Geoscience and Remote Sensing Letters, Vol. 8, No. 3, pp. 542-546. 
  8. Datt, B., T. R. McVicar, T. G. Van Niel, D. L. Jupp, and J. S. Pearlman(2003), Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes, IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No. 6, pp. 1246-1259.  https://doi.org/10.1109/TGRS.2003.813206
  9. De Asis, A. M. and K. Omasa(2007), Estimation of vegetation parameter for modeling soil erosion using linear Spectral Mixture Analysis of Landsat ETM data, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 62, No. 4, pp. 309-324.  https://doi.org/10.1016/j.isprsjprs.2007.05.013
  10. Dennison, P. E., K. Q. Halligan, and D. A. Roberts(2004), A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper, Remote Sensing of Environment, Vol. 93, No. 3, pp. 359-367.  https://doi.org/10.1016/j.rse.2004.07.013
  11. Foucher, P. Y., L. Poutier, P. Deliot, E. Puckrin, and S. Chataing(2016), Hazardous and Noxious Substance detection by hyperspectral imagery for marine pollution application, in proc. IEEE International Symposium on Geoscience and Remote Sensing, Beijing, China, pp. 7694-7697 
  12. Ghiyamat, A., H. Z. M. Shafri, G. A. Mahdiraji, A. R. M. Shariff, and S. Mansor(2013), Hyperspectral discrimination of tree species with different classifications using single-and multiple-endmember, International Journal of Applied Earth Observation and Geoinformation Vol. 23, pp. 177-191.  https://doi.org/10.1016/j.jag.2013.01.004
  13. Goetz, A. F.(2009), Three decades of hyperspectral remote sensing of the Earth: A personal view, Remote Sensing of Environment, Vol. 113, pp. S5-S16.  https://doi.org/10.1016/j.rse.2007.12.014
  14. Green, R. O., M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, and O. Williams(1998), Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS), Remote Sensing of Environment, Vol. 65, No. 3, pp. 227-248.  https://doi.org/10.1016/S0034-4257(98)00064-9
  15. Han, D. G., H. C. Seo, J. W. Choi, and M. Lee(2018), Experiment and Simulation of Acoustic Detection for the Substitute for Sunken Hazardous and Noxious Substances Using the High Frequency Active Sonar. Journal of the Korean Society of Marine Environment and Safety, Vol. 24, No. 4, pp. 459-466.  https://doi.org/10.7837/kosomes.2018.24.4.459
  16. Heinz, D. C.(2001), Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery, IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 3, pp. 529-545.  https://doi.org/10.1109/36.911111
  17. Homayouni, S. and M. Roux(2004), Hyperspectral image analysis for material mapping using spectral matching, in proc. International Society for Photogrammetry and Remote Sensing, Istanbul, Turkey, 28. 
  18. Huixi, X. and C. Yunhao(2011), A technique for simulating pseudo natural color images based on spectral similarity scales, IEEE Geosci. Remote Sens. Lett., Vol. 9, No. 1, pp. 70-74.  https://doi.org/10.1109/LGRS.2011.2160710
  19. Jimenez, M. and R. Diaz-Delgado(2015), Towards a standard plant species spectral library protocol for vegetation mapping: A case study in the shrubland of Donana National Park. ISPRS International Journal of Geo-Information, Vol. 4, No. 4, pp. 2472-2495.  https://doi.org/10.3390/ijgi4042472
  20. Khanna, S., M. J. Santos, S. L. Ustin, K. Shapiro, P. J. Haverkamp, and M. Lay(2018), Comparing the potential of multispectral and hyperspectral data for monitoring oil spill impact, Sensors, Vol. 18, No. 2, p. 558. 
  21. Ko, M. K., C. H. Jeong, M. Lee, and S. H. Lee(2019), Development of a metamodel for predicting near-field propagation of hazardous and noxious substances spilled from a ship, Applied Sciences, Vol. 9, No. 18, p. 3838. 
  22. Kumar, A. S., V. Keerthi, A. S. Manjunath, H. van der Werff, and F. van der Meer(2010), Hyperspectral image classification by a variable interval spectral average and spectral curve matching combined algorithm, International Journal of Applied Earth Observation and Geoinformation, Vol. 12, No. 4, pp. 261-269.  https://doi.org/10.1016/j.jag.2010.03.004
  23. Law, R. J., C. Kelly, P. Matthiessen, and J. Aldridge(2003), The loss of the chemical tanker Ievoli Sun in the English Channel, October 2000, Marine Pollution Bulletin, Vol. 46, No. 2, pp. 254-257.  https://doi.org/10.1016/S0025-326X(02)00222-9
  24. Lee, M. and J. Y. Jung(2013), Risk assessment and national measure plan for oil and HNS spill accidents near Korea, Marine Pollution Bulletin, Vol. 73, pp. 339-344.  https://doi.org/10.1016/j.marpolbul.2013.05.021
  25. Lee, M. and S. Oh(2014), Development of response scenario for a simulated HNS spill incident, Journal of the Korean Society of Marine Environment and Safety, Vol. 20, No. 6, pp. 677-684.  https://doi.org/10.7837/kosomes.2014.20.6.677
  26. Levshina, S. I., N. N. Efimov, and V. N. Bazarkin(2009), Assessment of the Amur River ecosystem pollution with benzene and its derivatives caused by an accident at the chemical plant in Jilin City, China, Bulletin of Environmental Contamination and Toxicology, Vol. 83, No. 6, pp. 776-779.  https://doi.org/10.1007/s00128-009-9798-1
  27. Lopez, S., P. Horstrand, G. M. Callico, J. F. Lopez, and R. Sarmiento(2011), A low-computational-complexity algorithm for hyperspectral endmember extraction: Modified vertex component analysis, IEEE Geoscience and Remote Sensing Letters, Vol. 9, No. 3, pp. 502-506. 
  28. Lopez, S., P. Horstrand, G. M. Callico, J. F. Lopez, and R. Sarmiento(2012), A novel architecture for hyperspectral endmember extraction by means of the modified vertex component analysis (MVCA) algorithm, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 5, No. 6, pp. 1837-1848.  https://doi.org/10.1109/JSTARS.2012.2205560
  29. Nascimento, J. M. and J. M. Dias(2005), Vertex component analysis: A fast algorithm to unmix hyperspectral data, IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 4, pp. 898-910.  https://doi.org/10.1109/TGRS.2005.844293
  30. Nascimento, M. K. S., S. Loureiro, M. R. dos Reis Souza, M. da Rosa Alexandre, and J. Nilin(2020), Toxicity of a mixture of monoaromatic hydrocarbons (BTX) to a tropical marine microcrustacean, Marine Pollution Bulletin, Vol. 156, p. 111272. 
  31. Park, J. J., S. Oh, K. A. Park, T. S. Kim, and M. Lee (2020), Applying hyperspectral remote sensing methods to ship detection based on airborne and ground experiments, International Journal of Remote Sensing, Vol. 41, No. 15, pp. 5928-5952.  https://doi.org/10.1080/01431161.2019.1707904
  32. Park, J. J., K. A. Park, P. Y. Foucher, P. Deliot, S. L. Floch, T. S. Kim, and M. Lee(2021), Hazardous Noxious Substance Detection Based on Ground Experiment and Hyperspectral Remote Sensing, Remote Sensing, Vol. 13, No. 2, p. 318. 
  33. Park, M. O., H. S. Park, T. Kim, S. Oh, and M. Lee(2016), A study on the development of HNS database for response system of marine spill accident in Korea, Journal of the Korean Society of Marine Environment and Safety, Vol. 22, No. 1, pp. 52-58.  https://doi.org/10.7837/kosomes.2016.22.1.052
  34. Schwarz, J. and K. Staenz(2001), Adaptive threshold for spectral matching of hyperspectral data, Canadian Journal of Remote Sensing, 27, No. 3, pp. 216-224.  https://doi.org/10.1080/07038992.2001.10854938
  35. Seo, D., S. Shin, S. Oh, M. Lee, and S. Seo(2020), Rapid eco-toxicity analysis of hazardous and noxious substances (HNS) using morphological change detection in Dunaliella tertiolecta, Algal Research, Vol. 51, p. 102063. 
  36. Somers, B., G. P. Asner, L. Tits, and P. Coppin(2011), Endmember variability in spectral mixture analysis: A review, Remote Sensing of Environment, Vol. 115, No. 7, pp. 1603-1616.  https://doi.org/10.1016/j.rse.2011.03.003
  37. Sun, S., Y. Lu, Y. Liu, M. Wang, and C. Hu(2018), Tracking an oil tanker collision and spilled oils in the East China Sea using multisensor day and night satellite imagery, Geophysical Research Letters, Vol. 45, No. 7, pp. 3212-3220.  https://doi.org/10.1002/2018GL077433
  38. Thenkabail, P., P. GangadharaRao, T. Biggs, M. Krishna, and H. Turral(2007), Spectral matching techniques to determine historical land-use/land-cover (LULC) and irrigated areas using time-series 0.1-degree AVHRR pathfinder datasets, Photogrammetric Engineering and Remote Sensing, Vol. 73, No. 10, pp. 1029-1040. 
  39. Tompkins, S., J. F. Mustard, C. M. Pieters, and D. W. Forsyth(1997), Optimization of endmembers for spectral mixture analysis, Remote Sensing of Environment, Vol. 59, No. 3, pp. 472-489.  https://doi.org/10.1016/S0034-4257(96)00122-8
  40. Wang, J. and C. I. Chang(2006), Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery, IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 9, pp. 2601-2616.  https://doi.org/10.1109/TGRS.2006.874135
  41. Winter, M. E.(1999), N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data, in proc. Society of Photo-Optical Instrumentation Engineers, Colorado, USA, pp. 266-275. 
  42. Woo, Y. J. and C. J. Lee(2016), A study of Emergency Response for the Leakage Accident of Hazardous and Noxious Substances in a Port. Journal of the Korean Society of Safety, Vol. 31, No. 6, pp. 32-38.  https://doi.org/10.14346/JKOSOS.2016.31.6.32
  43. Wu, X., B. Huang, A. Plaza, Y. Li, and C. Wu(2013), Real-time implementation of the pixel purity index algorithm for endmember identification on GPUs, IEEE Geosci. Remote Sensing Letters, Vol. 11, No. 5, pp. 955-959. 
  44. Xia, W., X. Liu, B. Wang, and L. Zhang(2011), Independent component analysis for blind unmixing of hyperspectral imagery with additional constraints, IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 6, pp. 2165-2179.  https://doi.org/10.1109/TGRS.2010.2101609
  45. Zhang, X. and P. Li(2014), Lithological mapping from hyperspectral data by improved use of spectral angle mapper, International Journal of Applied Earth Observation and Geoinformation, Vol. 31, pp. 95-109.  https://doi.org/10.1016/j.jag.2014.03.007
  46. Zortea, M. and A. Plaza(2009), A quantitative and comparative analysis of different implementations of N-FINDR: A fast endmember extraction algorithm, IEEE Geoscience and Remote Sensing Letters, Vol. 6, No. 4, pp. 787-791. https://doi.org/10.1109/LGRS.2009.2025520