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Abstract : Spatial data integration using multiple geo-based data sets has been regarded as one of
the primary GIS application issues. As for this issue, several integration schemes have been developed as
the perspectives of mathematical geclogy or geo-mathematics. However, research-based approaches for
statistical/quantitative assessments between integrated layer and input layers are not fully considered yet.
Related to this niche point, in this study, spatial data integration using multiple geoscientific data sets by
known integration algorithms was primarily performed. For spatial integration by using raster-based GIS
functionality, geological, geochemical, geophysical data sets, DEM-driven data sets and remotely sensed
imagery data sets from the Ogdong area were utilized for geological thematic mapping related by mineral
potential mapping. In addition, statistical/quantitative information extraction with respective to
relationships among used data sets and/or between each data set and integrated layer was carried out,
with the scope of multiple data fusion and schematic statistical assessment methodology. As for the
spatial integration scheme, certainty factor (CF) estimation and principal component analysis (PCA) were
applied. However, this study was not aimed at direct comparison of both methodologies; whereas |, for
the statistical/quantitative assessment between integrated layer and input layers, some statistical
methodologies based on contingency table were focused. Especially, for the bias reduction, jackknife
technique was also applied in PCA-based spatial integration. Through the statistic analysis with respect to
the integration information in this case study, new information for relationships of integrated layer and
input layers was extracted. In addition, influence effects of input data sets with respect to integrated layer
were assessed. This kind of approach provides a decision-making information in the viewpoint of GIS
and is also exploratory data analysis in conjunction with GIS and geoscientific application, especially
handling spatial integration or data fusion with complex variable data sets.
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1. Introduction

Since the early 1990s, GIS(Geographic
Information System) is regarded as one of
important tools for geo-based spatial data analysis.
Especially, spatial integration, one of GIS-based
data fusion approaches, with multiple source geo-
registered data sets has been studied in the GIS
perspectives. In spatial integration, it covers
geological data sets of catchment geochemistry,
(airborne) geophysical, and geological map,
remotely sensed imagery, and DEM, as data types
utilized. In these days, several useful
methodologies towards spatial data integration
based on geo-mathematical approaches have been
developed and applied to site-specific researches
such as mineral exploration/deposit modeling,
geo-based hazard modeling, environmental

vulnerability mapping given conditions and so
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forth. This integration schemes have the basis or
application of : Weight of evidence (Bonham-
Carter et al., 1988), Dempster-Shafers theory
(Moon, 1990), multivariate statistical approach,
(Vulkan and Duval. 1993 ; Lee et al., 1995), Fuzzy
set theory (Wright and Bonham-Carter, 1996),
Certainty Factor(CF) estimation approach (Chi et
al., 1997) or Bayes theory (Rostirolla et al., 1998).
Therefore, integrated or fused layer in the form of
thematic/favorable mappable information,
whatever any methodology is applied, can be
regarded as decision-making information for a
given purpose. However, influence of input layers
and error propagation/assessment with respect to
each integration method are not considered yet;
moreover, there are a few researches or
unpublished ones on this problem. While, though
statistical analysis languages and statistical

analysis methods directly linked with commercial
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or public-based GIS tools are recently released, it
is somewhat insufficient to quantitatively
interpret the spatially integrated mappable
information due to differences between spatial
data and general variables. But most of them are
currently developing from simple statistical
expression or thematic mapping related to
statistical estimation to more sophisticated
problem-solving.

The main purpose of this study is not just
comparison with various spatial integration
methodologies mentioned before. Rather,
quantitative assessments between resultant layer
and input layers, independent on spatial
integration approaches, are more emphasized. It is
also possible to consider to statistical information
extraction in the viewpoint of data fusion, or
exploratory data analysis.

As an actual case study for this approach,
mineral potential mapping by detection of
favorable mineral occurrence zone was carried
out. In this case study, multiple geo-based data
sets collected from the Ogdong area were used for
application of integration scheme (CF estimation
and PCA). After the resultant integrated layer was
obtained, some statistical methodologies (chi-
square statistics coefficient, Cramers coefficient,
contingency coefficient, entropy, Yule coefficient,

and odds ratio ) for quentitative assessment or

Probi{ T, | vi(p)} — Proby{ Tp)

Probi{T, | vikp)} (1 — Probi{T,})
CFi(p) =
Probi{ T, | vidp) ) — Proby{ T}
Probi{T,}(1 — Probi{T),})
where,

extraction of statistic information were applied.

2. Applied Methodologies
in the Case Study

In this study, CF estimation approach and
multivariate statistical approach were applied for
data integration scheme.

CF estimation, widely used in a rule-based
system, measures ceftainty level of conditional
probability with respect to priori probability given
a certain evidence. This method is known as the
effective method in case that there is much
statistical data. A certainty factor (CF) at p for the
kth layer, denoted by CFk(p), is defined as the
change in certainty that the proposition (a pixel p
contains deposits of type D) is true, from without
the evidence at p to given the evidence at p in the
kth layer (Chung et al., 1993). CF ranges between -
1 and +1. Positive numbers for CF correspond to
an increase in certainty in a proposition after the
evidence is observed, whereas negative numbers
correspond to a decrease in certainty.

The definition discussed by Heckerman(1986) is
followed.

According to this formulation, CF is equal to
zero if the conditional probability is equal to the
priori probability; the absolute value of CF

if Probi{ T, | vi(p)} > Probi{T})}

if Prob{T, | vidp)} > Probg{T))

Prob{T,} : the priori probability that a pixel p contains a deposit before any evidence(layers) is not given

Probi (T, | vi(p)} : the conditional probability that a pixel p contains at least one deposit given the evidence

vi(p) at p.

~93-



Journal of the Korean Society of Remote Sensing, Vol.15, No.2, 1999

increases if the conditional probability is far from
the priori probability. Thus, CF can be utilized as a
measure of certainty with respect to the priori
probability only.

While, Principal Component Analysis (PCA),
one of the multivariate statistical approach, is the
method to reduce dimension between correlated
variables (Jolliffe, 1986). The general PCA scheme
is based on the eigen-analysis. To accomplish
PCA, Z-scored transformation, the process of the
standardization of variables, is needed. Z-scores
with zero mean and unit variance mean statistical
centering and standardization of each data set. It
is necessary to handle observations with different
unit. Principal component loading value reflects
the relative importance of a variable within a
principal component and principal component
scores constitute orthogonal projections of the
given data values onto the axes defined by
principal components (Davis, 1986).

To measure association between two thematic
maps with multiple classes, contingency table is
commonly used (Bonham-Carter, 1994). Contingency
table for cross-tabulation is the table showing
discrete frequency or cell-counting in the matrix
style and is similar to error/confusion matrix
commonly used to calculate the classification
accuracy of remote sensing image. After
contingency table is calculated, several statistics
related to measure of association can be obtained
to quantitatively assess integrated results or
layers; chi-square statistics coefficient, Cramers
coefficient, contingency coefficient, entropy,
kappa coefficient, Yule coefficient, or odds ratio.
Among them, kappa coefficient is limited to the
situation of comparing maps with the same
number of matched classes. Yule coefficient and
odds ratio is mainly utilized to the comparison of

binary maps. However, measures of associations

between binary patterns can be applied to the
comparison of multi-class maps by treating each
combination of map classes as a binary case. As
for some statistics mentioned before, let the table
between map A and B be called matrix 7, with
elements T, where there are i=1,2,---,n classes of
map B (rows) and j=1,2,---,m classes of map A
(columns). The marginal totals of 7 are defined as
T;. for the sum of the ith row, T,; for the sum of the
jth column, and T.. for the grand total summed
over rows and columns.

Then, chi-square statistic is defined as

The meaning of large chi-square statistic value
is that the association between two maps is strong.
Two commonly quoted coefficients of association
based on chi-squre values are the Cramers

coefficient(V), and the contingency coefficient(C).

x2
V7 mm(l—lj 0N C=T. v e

Two coefficients vary between 0 (indicating no

correlation) to a maximum value less than 1.

To compute entropy statistics(U) which varies
between 0 and 1, proportions, by dividing each
element by the grand total, are used. Assuming
that proportions matrix for map A and map B has
been determined from T,

H(A) + H(B) - H(A, B)

U=2=""gmuay+am !

where,
entropy of A : H(A) =

j= . T.
Z T, In T,
=1 T,

m ;
-5 i T
T
N

T..

E In
T..

entropy of B: H(B) =

joint entropy : H(A,B) =—_Z _Z Ty
i=1j=1 T
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Yule coefficient (o) and odds ratio(Og) are
defined as follows ;

o = VT =TTy
VTu/Tz +VTo/Tn

Where,
ANB=T,, ANB=T5, ANB=T)y, ANB=T)).

Op= L0/ T2
T\o/T>,

Yule coefficient ranges in value between -1 and
+1 like a correlation coefficient, and odds ratio is
always positive, being greater than 1 for patterns
that are positively associated, 1 if the two patterns
are independent and less than 1 if they are
negatively associated.

As another applicable statistics, Jackknife
technique, as the approximation of bootstrapping,
is a statistical method to convert a given
estimation into a revised estimation which is less
biased to original one (Cressie, 1993 ; Efron and
Tibshirani, 1993), and this methodology is
tentatively applied to PCA scheme with the
following rationale.

Let £ and E_; denote the estimation of £ on all n
observation, and partial estimation obtained by

deleting ith sample and estimation E from

remaining {(n-1) observations, respectively. Then,
pseudo-value, E; , combination of the partial

estimates with whole sample estimations, is
Ei= E-bias = nE-(n-1) E_, where i = 1,2..... n.

The average of pseudo-value is the jackknifed

estimate of £ with regards to E,

E=

M=

1 -

s Ei

3. Case Study for Mineral
Potential Mapping

1) Data Sets for the Case Study

The general geology of the study area is shown
in Fig. 1. Geologically, the study area is covered
with the Precambrian metasediments, pegmatitic
migmatite, Joseon supergroup of Cambro-
Ordovician, Pyongan supergroup of late
Carboniferous to Triassic, formation of Jurassic
and igneous rocks such as granites, porphyritic
intrusives and dikes. The most part of the study
area is composed of metasediments.

Most polymetallic mines are located at western

B NSO JO. - J o ¥
] i !
! Alluvium o ! \\\ :

| Daedong system % 3 o8
.. Pyeongan supergroup Ik o
.. . rudy Mt e, .

~~17] Joseon supergroup(Ordovician) a7 o L 4
Joseon supergroup(Cambrian) !

lPegmatilic migmatite 36" b o

Precambrian schist & quartzite
Granitic gneisses &4

1250 1260 1277 128° 1297 130

Location of the Study Area

Fig 1. Geological map, as one of GIS layers, and location map of the study area.
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Fig. 2. False color composite image using LANDSAT TM, covering the whole study area.

and eastern area. Ore deposits are mainly located
at great limestone series of Joseon supergroup and
granite, ; rich elements of ore deposits are Fe, Pb
and Zn.

As for reconnaissance survey of this case study
area prior to data integration task, remotely
sensed imagery was preprocessed and classified.
A false color composite(532 bands) of the
geometrically corrected Landsat TM imagery in
Oct., 1989 of the study area is presented in Fig. 2.
As shown in Fig. 2, the topography of the study
area is steep and hilly mountainous region. The
Ogdong stream which flows from east to west and
drainages are well shown. In the north- west part,

main drainage creeks intersect the direction of

mountain ridges and in the eastsouth part, main -

drainages are parallel to the directions of ridges.
As for actual applications, 15 types of geo-based

data sets were utilized (Table 1). As for

geophysical data, airborne surveyed data

composed of residual magnetic anomaly and
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radiometric anomaly in originally vector format
were converted to raster format. As for
geochemical data, ground surveyed data sets from
widely distributed stream rock samples were
resampled and interpolated to obtain grid data.
DEM (Digital Elevation Model) was produced by
vector to raster conversion process. Then, DEM-
driven slope and aspect map sets were used as the
topographic data sets. Supervised classification
was used for Landsat TM imagery as remotely
sensed data sets. As a preprocessing, geometric
correction was carried out. Because the study area
is mountainous region, the selection of GCP was
somewhat difficult. The RMS(Root Mean Square)
error was 0.94 pixel, less than 1 pixel. For spatial
integration, cell resolution of all raster data sets
was converted to 30 meter, that of Landsat TM
imagery. Therefore, error less than 1 pixel had no
problem for quantitative analysis. Maximum
likelihood method, one of the supervised

classification methods, was applied for
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Table 1. Data sets for spatial integration in the case study

Input Layers Number of Recorded Class Applied Data Integration Scheme
Geological map* 11 CF
Ag (Silver) 6 CF & PCA
Cd (Cadmium) 6 CF & PCA
Geochemical Cu (Copper) 6 CF & PCA
Surveyed data sets** Pb (Lead) 6 CF & PCA
U (Uranium) 6 CF & PCA
Zn (Zinc) 6 CF & PCA
gammaray 8 CF & PCA
Airborne K (Potassium) 8 CF & PCA
Geophysical Th (Thorium) 8 CF & PCA
data sets *** U (Uranium) 8 CF & PCA
Residual magnetic intensity 8 CF & PCA
Remote sensing Image | Supervised Classification 5 CF
{Landsat TM) image
DEM Slope 9 CF
Aspect 8 CF
Ore deposit map 8 ore deposits CF

(CF : Certainty factor estimation, PCA : Principal Component Analysis)
Note : The type of data used in PCA scheme is continuous variable.

Data Sources :

* Geological map of Ogdong area scaled by 1:50,000, Geological Survey of Korea, 1966.
** Geochemical Maps for Ogdong Sheet in the Tacbaegsan Mineralized Belt, KIER(Korean Institute of Energy and Resources),

1984

**% Aerial gamma ray and magnetic survey map at Jungseon, Samcheok, Yemi, Jangsung (1:50,000), KIER, 1988

classification. The training area was specified by 5
classes ; water body, forest, alluvium & barren
land, agricultural land, and shadow zone. To
enhance the classification accuracy, shadow zone
was additionally added. As a result of
classification, average, overall accuracy and kappa
coefficient were 94.14%, 95.03% and 0.9308,
relatively. Geological map was also fully geo-
registed into GIS with geometric features and their
database attributes.

To integrate with categorical variables
(geological data, supervised classification image),
continuous variable data sets were converted to
ordinal variables, additionally. Through
histogram analysis, geochemical, geophysical and

—97-

DEM-driven data sets, which were originally
continuous variables, were reclassified for
reflecting the feature of them. In that, minimum
class value and maximum class value represent
“very low” and “very high”, respectively.

Also, the location map of known eight mines
was used as prior evidence in spatial integration
by CF estimation.

2) Spatial Integration and Statistics
Analysis Resuits

As for the integration of continuous variable
form data sets, geochemical and geophysical data
sets, PCA scheme was applied ; As for the

integration of all multiple geo-based data sets,
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which were ordinal and categorical variables.
towards detection of favorable mineral occurrence
zone, CF estimation scheme was applied, in
addition to known ore deposit map, as the ground
truth.

(1) PCA and Jackknifed Estimation Results

Z-scores transformed matrix of geochemical
and geophysical data sets, as continuous variable
form, were used for application of the PCA
scheme. Principal component I is associated with
29.1% of the total information of principal
components (Table 2 (a)). In general, PC [ is
associated with most information of principal
components. To consider from PC [ to PC IV,
about 72% of the total information of principal
components is associated. It is partly affected that
attribute of geochemical data sets reflects only

effect of surface anomaly, whereas that of

geophysical data sets reveals the complex effect of
both surface and sub-surface anomaly.

Principal component loading (Table 2 (b)),
which reflects the relative importance of a variable
within a principal component, were used in
analysis of principal component score. Absolute
value of PC loadings with respect to geochemical
data sets of PC I is larger than that of geophysical
data sets, except residual magnetic intensity and
PC loadings with respect to most element of PC I
are negative values, except Ag, U elements
showing positive values and Potassium showing
neutral (Tables 2(b)). High PC T scores indicate
low amounts of all of the variables (except Ag, U,
Potassium) (Fig. 3(a)). Negative PC scores indicate
higher percentages of the listed elements. Base
metal ore bodies in this area is associated with
spatial pattern of geochemical elements and

residual magnetic intensity, due to minus high

Table 2-a. Eigenvalues and percent with respect fo the first four PC axes as PCA resuit

Eigen vector Eigen value Percent Cumulative percent

I 3227 29.10 29.10

il 2.146 19.35 i 4845

il 1.474 1329 | 61.74

N 1.120 10.10 y 71.84

Table 2-b. PC loadings withe respect to each element of the first four PC axes
Input Layers I I i N

gammaray -0.304 0.889 0.068 0.179
Airborne K 0.002 0823 0.089 0.118
geophysical r Th -0.439 0372 -0.362 -0.165
datasets | U 0401 0.460 0.297 0314
’ Residual magnetic intensity -0.697 0.106 -0.292 -0.380
| Ag 0473 0.135 0729 0.040
| -0.645 0.090 0.413 0.492
Geochemical | Cu -0.628 0354 -0.160 0.549
datasets | Pb -0.685 -0.064 -0.063 -0.274
| U | 0559 0377 0285 -0.397
| Zn -0.691 0.132 -0.587 0.165
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loadings or saturation of geochemical elements
(except Ag, U} and residual magnetic intensity
intoaxis | .

As the total spatial pattern of PC I, northeast
area and northwest area show multi-element
anomalous zones. Those anomalous zones may be
affected to the known polymetallic mines. In that,
northeast area results from compounds originated
from the Imog, Yujeon, Dohwadong mines
located in Imog granite contact zone and
northwest area is mainly originated from Fe ore
deposit of Ogdong mine. Also, Fe component and
non-ferrous metals such as Pb, Zn are mixed in
those anomalous zones.

Relatively, PC loadings with respect to airborne
geophysical elements of PC ]I are positive values
and absolute value of PC loadings with respect to
airborne geophysical data sets is larger than that
of geochemical data sets (Table 2. (b)). So PC 1l
score mainly contains surface feature of
geophysical data as high score(Fig. 3(c)). Mostly,
PC1l scores show high values in granite, granitic
gneisses and rocks containing biotite. It is
reflection of high response of radiometric data
with respect to acidic rocks.

Jackknifed estimation in PCA-based integration
processing was also applied for unbiased
estimation to each PC scores. Applied jackknife
estimation to PCA scheme, spatial pattern of
integrated layers seems to slightly be changed as
the variation of PC score range, due to bias
reduction (Fig. 3(b), (d)). However, overall
distribution features of estimation is consistently
kept, compared to estimation without jackknifing.
Normally, bias reduction method influences
variance of estimation. In this case, variance of
jackknifed estimation decreases. It can be
explained; jackknifed estimation method causes a

good result with respect to “smooth” estimation

—99_

function. “smooth” estimation function means
that the small change of observations causes also
small change of estimation result. Airborne
geophysical data showing radiometric property of
bedrock and geochemical catchment data
showing anomalous distribution of mineralization
show somewhat difference variance distribution
with respect to each data. According to the
histogram analysis and correlation result (though
not quoted in this paper), geochemical data shows
large variation and dilution effect between
background values and anomalous values than
airborne geophysical data. Also, each data set is
relatively correlated. Though a sample is deleted
by partial estimation, some outliers in data sets are
smoothened by other data sets with large
variation and remaining samples. As result, it has
information with respect to that sample deleted
due to correlation. PCA scheme is to transform to
a new set of variables which are uncorrelated,
based on correlation of variables. Therefore, small
changed quantity of data sets does not cause large
change of estimation result and result of
jackknifed estimation shows as applied smoothing
effect with respect to PCA result.

Furthermore, because PCA scheme is not just
multiple inputs-to-one target, but multiple inputs-
to-one or more response, it may be insufficient to
interpret the potential mapping by the PCA
scheme. In spite of these drawbacks, the major
trend of PC images applied to jackknifed scheme
can be utilized as a kind of supporting or
supplementary layer for interpretation of other

integration method result.

(2) CF Estimation and Statistical Analysis Results

Spatial integration using CF estimation was
performed using the whole data sets towards

favorable mapping of mineral occurrence, one of
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Fig. 3. Spatially integrated model by PCA: (a) PC 1 image, (b) Jackknifed PC I image (b) PC Il image, and

(d) Jackknifed PC Il image.

main goals of this study. The resultant Iayer can
be fitted real situation showing in-situ mineral
occurrence (Fig. 4). It is basically caused by CF
estimation method based on probabilistic relations
between known occurrence event and input
layers. Especially, there is a zone represents
somewhat high potentiality (85% ~ 90%). This
zone lies in granite zone. It results from the fact
main ore deposits lie in granite and limestone.
Also, low PC sore zone of PC [ and high PC
score of PC [ are partly related to high potential
zone of CF estimation result. For actual field
exploration of this large scale area, high ranked
zone in CF value can be considered as new target
zones for mineral exploration.

Finally, to analyze quantitatively spatial
integration result, chi-square statistic coefficient

(x?), Cramer coefficient (C), contingency

coefficient (V), entropy (U) were computed to
reveal the relationship between original input
layers and resultant layer. Also, Yule coefficient
(@), odds ratio(Og) were computed to reveal the
most dominant class value within classified zones
over 95% of CF estimation layer. While, those
coefficients had somewhat different sensitivities in
same situation, so that all coefficients were
considered. This statistic can be utilized for
quantitative assessment of spatially integrated
information.

Using 72, C, V and U, overall spatial relationship
between original input layers and resultant layer
can be extracted. As for these statistics (Table 3 (a)),
overall tendency of each layer is consistent,
showing the highest rank of Pb, Cu, Zn and
geology map. It is due to ore deposit major

element and host rock. Also, geomorphological
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Fig. 4. Spatially integrated model by Certainty Factor estimation method.

aspect extracted from topographic data sets and
supervised classification image are not highly
affected to integration result. Relatively, the
integrated result is more affected to geochemical
data sets and geology map than airborne
geophysical data (except, residual magnetic
intensity). Considering the mineral occurrence,
this fact means that the integrated /merged result
is more highly affected to suface catchment data
directly originated by ore deposits and residual
magnetic intensiy, related to Fe element,
regionally important and dominant element.
Therefore, if there exists outlier in geochemical
data sets, that severely may affect to the
integration result.

Among the geochemical data sets, Ag, U
elements are relatively small effect, but, effect of
those elements is larger than airborne geophysical
data sets. The high effect of Ag, U showing more
response with respect to precambrian meta-

sedimentary rocks than sedimentary rocks may

attribute to non-diagonal deviation caused by
outlier which may exist in data sets.

While, in a, Og (Table 3 (b)), most dominant
class of each data sets with respect to high mineral
potential zone is revealed from the statistical
result. Airborne magnetic intensity, Ag, Pb and Zn
show relatively high value.

As for the airborne geophysical/radiometric
data sets, most elements, except Potassium, show
high class value. The meaning of these high class
values is that granite zone and black shale
containing coal seam related to Pyongan
supergroup correspond to high potential zone. It
is reasonable that the high class value of residual
magnetic intensity is due to Fe component which
results from Fe ore deposits. In spite of high
response of Potassium with respect to granite, two
cases that potassium shows low class value and
that low association in granite zone results from
the large non-diagonal deviation probably effect

in computing a binary case.
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As for the geochemical data sets, low class
values of Ag, U correspond to pattern of the PC
loading with respect to PC I . Especially, the
extreme large value of Ag reflects on large effect

of supplementary classes containing outliers.

Table 3. Summary of statistical analysis

(a) Chi Square(y?), Cramer(C), Contingency(V), Entropy(U) Coefficients

Therefore, it is thought that Potassium, Ag, and U
elements are needed to assess field data by EDA
{Exploratory Data Analysis), although it is not
discussed in this study, and further research of

this approach is useful to extend to GIS-based

Input Layers 7 C \Y U
gammaray 14903.72 0.105 0.179 0.0159
Airborne K 47822.95 0.188 0.309 0.0557
geophysical Th 44153.16 0.180 0.298 0.0634
data sets U 25285.42 0.137 0.230 0.0243
Residual magnetic intensity | 76838.59 0.238 0.381 0.066
Ag / 59790.51 0.210 0.341 0.081
Cd } 80075.26 0.243 0.388 0.070
Geochemical | Cu [ 1226410 0.300 0.462 0.151
data sets Pb 147770.7 0.330 0.496 0.152
U 69416.89 0.226 0.365 0.096
Zn 105290.0 0.279 L 0434 0.135
Geology 144378.9 0.326 0.492 0.145
Landsat TM classification image 4160.51 0.055 0.096 0.006
DEM Slope 4445.05 0.057 0.099 0.006
Aspect 14159.45 0.102 0.174 0.018
(b) Yule coefficient(r), Odds Ratio(Og)
Input layers Main class o Or
| gammany 7 0.350 4313
Airbome K 2 0.260 2903
geophysical Th 5 0.393 5.269
data sets U 6 0.399 5414
Residual magnetic intensity 7 0.607 16.739
Ag 2 0.822 105.295
Cd 5 0.572 13.500
Geochemical Cu 3 0.335 4036
data sets Pb 6 0.618 17.972
8] 2 0.488 8.460
] Zn 4 0.551 11.938
Geology granite 0518 9.909
Landsat TM classification image alluvium & barren land 0.158 1.894
DEM Slope 1 0.097 1474
| Aspect 2 0.117 1.599
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EDA.

As results, Table 3 shows another useful
information, not represented at integrated layer of
Fig 4. But, in computing statistical coefficients
related to association, those results may not
perfectly reflect the relationship between each
class, but the relationship between non-diagonal
components. Notwithstanding this problem,
based on the results of this case study, it is
thought that these statistical/quantitative
information is helpful to outline inter-relation
between input layers and/or integrated layer and
each input layer and even data quality assessment
by spatial pattern which may be overlooked by

visual interpretation of the resultant layer

4. Concluding Remarks

GIS-based data integration in the geoscience
application can be realized as spatial analytical
functionality; however, in this case study, post
processing and/or interpretation of spatially
merged layer, new generated layer, based on
specific methodologies for data integration were
dealt with.

In the case study, spatial integration by using
PCA and CF estimation was implemented for
mineral potential mapping. As a result, spatial
pattern of PCA (PC 1) and CF estimation results
showed the pattern well fitted to actual ground
truth representing actual mine or mineral ore
deposits. Also, through statistical analysis based
on contingency table, besides the mineral
potential distribution, quantitative information
between integrated layer and input layers was
extracted. As a result, Pb, Cu, Zn of geochemical
data sets, residual magnetic intensity of airborne

geophysical data sets, geological map were

revealed as input layers which highly affect to
integrated layer. Additionally, it were thought
that there might be outliers in Potassium, Ag, U
and processing of assessing field data was
required.

Geological interpretation of potential mapping
composed of PC scores is not simple and mostly
depends on computed results such as the
cumulative percent of PC axes or the PC loading
trend. In spite of the intrinsic complexity, the
result of PCA scheme can be considered with
relevant ground truth directly/indirectly related
to mineral occurrence as a GIS-type decision-
supporting information. In applying jackknife
estimation technique for the bias reduction,
because the applied scheme is not the model
function, but the estimation technique, the
resultant layer shows the local difference;
however, the jackknife technique will efficiently
be used as a tool for significant evaluation of
initial estimation. Moreover, as for spatial
reasoning techniques such as Dempster’s rule of
combination and fuzzy set theory handling
semantics, it will be used as an effective tool. As
well, because the jackknife technique is based on
the relationships between whole estimation and
partial estimations obtained by deleting one
sample, comparison between whole estimation
and partial estimations will be developed as a
data quality assessment tool.

Though various spatial data fusion
methodologies have been developed, data
interpretation with respect to newly generated
layer by various methodologies is somewhat
different according to applied scheme;
furthermore, influence or confusion effect of input
layers severely may affect to the result.

In this present state, spatial integration with

post-processing step of statistical analysis in this
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case study provides significant information for
assessment of integrated/merged layer,
overlooked at normal interpretation of spatially
integrated data layer. The statistical information
extracted from merged/integrated layer and input
layers provides quantitatively important
information with respect to relationships among
used data sets and even between each data set and
integrated layer, in addition to the potential
distribution of mineral occurrence. This
information revealed by this methodologies are
regarded as supporting information with
quantitative additonal evidences for detailed
qualitative interpretation.

While, this statistical analysis of this case study
has more applicable or potential aspects : input
data quality assessment and validation of data
merging methodology. Actually, the interpretation
of merged/integrated layer needs prerequisite
concerning quality assessment of surveyed data
themselves in the scope of EDA. However, this
approach can be conversely utilized to assess
multiple geo-based data, if provides efficient
geological evidences in the actual field. Through
the interpretation of whole spatial pattern and
cell-valued aspect associated with EDA,
validation process of data merging methodology
can be assessed and the comparison with various
merging methodologies can be possible. Also,
though this approach and case study are
performed in detecting task of mineral occurrence,
the methodologies applied in this case study can
be developed as an applicable general scheme,
handling general multi-sources data.

Finally, this case study is towards geoscience
application of GIS in spatial integration
perspectives, but it can be applicable for the
following general or specific GIS schemes using

over tens of multiple data sets: site selection task

in urban application, site characterization in
environmental application, suitable range
determination of land in precise farming and so
forth.

References

Bonham-Carter, G. F., Agterberg, F. P. and Wright
D. F., 1988, Integration of Geological Data
Set for Gold Exploration in Nova Scotia,
Photogrammetric Engineering and Remote
Sensing, 54(11): 1585-1592.

Bonham-Carter, G. F., 1994, Geographic
Information Systems for Geoscientists :
Modeling with GIS, Pergamon.

Chi, K. H. , Seo, ]. Y. and Han, J.K,, 1997, Study on
the Quantitative Evaluation of Mineral
Resource Potentiality using Remote
Sensing and Spatial Geoscience Data (11),
KR-97(T)-1.

Chung, F. C. and Fabbri A. G., 1993, The
Representation of Geoscience Information
for Data Integration, Nonrenewable
Resources, 2(2): 122-139.

Cressie, N. A. C., 1993, Statistics for Spatial Data,
Wiley Series.

Davis, J. C., 1986, Statistics and Data Analysis in
Geology, John Wiley & Sons, Inc.

Efron, B. and Tibshirani R.J., 1993, An
Introduction To the Bootstrap, Chapman &
Hall.

Heckerman, D., 1986, Probabilistic Interpretations
for MYCIN'’s Certainty Factors, in Kanal,
L.N., and Lemmer, ].F,, eds., Uncertainty in
artificial intelligence: New York, Elsevier,
167-196.

Jolliffe, I. T. (1986) Principal Component Analysis,
Springer-Verlag.

104~



GliS-based Spatial Integration and Sratistical Analysis using Multiple Geoscience Data Sets: A Case Study for Mineral Porential Mapping

Lee, K., Kwon, B. D. and Chi, K. H., 1995,
Multivariate Analysis of Geochemical Data
for Mineral Potential Mapping in the
Taebaek area, Jour. Geol. Soc. Korea. 31(6):
567-575.

Moon, W. M,, 1990, Integration of Geophysical
and Geological Data using Evidential
Belief Function, IEEE Trans. on Geoscience
and Remote sensing, 28(4): 711-720.

Park, N. W, Lee, K., Chi, K. H. and Kwon, B.D,,
1999, Application to Statistical Analysis
Method for Multiple Geoscience Data
Integration: Perspectives of GIS Spatial
Analytical Functionality, Proc. Of KSRS

spring meeting, 99-104.

Rostirolla, S.P., Soares, P. C. and Chang, H. K.,
1998, Bayesian and Multivariate Methods
Applied to Favorability Quantification in
Reconvavo Basin and Ribeira Belt, Brazil,
Nonrenewable Resources, 7(1): 7-23.

Vulkan, U. and Duval J. S., 1993, Multivariate
Statistical Analysis of Geophysical Data in
Nevada, Geophysics, 58: 749-755.

Wright, D.F. and Bonham-Carter, G. F., 1996,
VHMS Favourability Mapping with GIS-
based Integration Models, Chiisel Lake-
Anderson Lake area, Geological Survey of
Canada, Bulletin 426: 339-376, 387-401.

-105-



