• Title/Summary/Keyword: PATH method

Search Result 4,429, Processing Time 0.03 seconds

The Study of Algorithm for the Path generation in the Obstacles Environment (장애물 환경에서 경로 생성을 위한 알고리즘 연구)

  • 황하성;양승윤;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.430-433
    • /
    • 1996
  • In This paper, we design the developed path generation method which is named that CBPM(Continuous path generation method Based artificial Potential field) that is able to be used in the obstacles environment. This CBPM is designed so that it puts together two obstacle avoidance algorithm-the continuous path generation method and the artificial potential field method. Here, the continuous path generation method generate the safety path using continuous path curvature. But, this method has demerits when used in obstacles environment in which are closely located. Another method which is named the artificial potential field method generates the path with the artificial potential field in the obstacles environment. But, APFM has local minima in certain places and unnecessarily calculates the path in which obstacles are not located. So, the developed path generation method, CBPM, is suggested and performances in many different obstacles environments are shown by using computer simulation.

  • PDF

A Study on New Map Construction and Path Planning Method for Mobile Robot Navigation (이동 로봇의 주행을 위한 새로운 지도 구성 방법 및 경로 계획에 관한 연구)

  • O, Jun-Seop;Park, Jin-Bae;Choe, Yun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.9
    • /
    • pp.538-545
    • /
    • 2000
  • In this paper we proposed a new map construction and path planning method for mobile robot. In our proposed method first we introduced triangular representation map that mobile robot can navigate through shorter path and flexible motion instead of grid representation map for mobile robot navigation. method in which robot can navigate complete space through as short path as possible in unknown environment is proposed. Finally we proposed new path planning method in a quadtree representation map. To evaluate the performance of our proposed new path planning method in a quadtree representation map. To evaluate the performance of our proposed triangular representation map it was compared with the existing distance transform path planning method. And we considered complete coverage navigation and new path planning method through several examples.

  • PDF

Obstacle Avoidance for AUV using CAPM (CAPM을 이용한 AUV의 장애물 회피)

  • 양승윤
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.17-29
    • /
    • 2001
  • In this paper, we designed the hybrid path generation method which is named CAPM(Continuous path generation method based on artificial Potential field) that is able to be used in the obstacles environment. This CAPM was designed so that it puts together two obstacle avoidance algorithm-the continuous path generation method(CPGM) and the artificial potential field method(APFM). Here, the CAPM generate the safety path using continuous path curvature. But, this method has demerits when used in obstacles environment in which are closely located. Another method which is named the APFM generates the path with the artificial potential field in the obstacles environment. But, It has local minima in certain places and unnecessarily calculates the path in which obstacles are not located. So, the CAPM was designed for autonomous underwater vehicle(AUV) obstacle avoidance. As the result of simulation, it was confirmed that the CAPM can be applied to a safe path generation for AUV.

  • PDF

PathFind Method Research (PathFinding Method 연구)

  • Choi, Won-Jin;Gu, Bon-Woo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.696-698
    • /
    • 2022
  • 게임에서는 장애물이 가로 막고 있을 때 길 찾기 알고리즘이 요구된다. Path Finding Method 는 길과 장애물을 고려하여 목적지까지의 경로를 찾는 방법을 말한다. A* 알고리즘은 이런 복잡한 미로 찾기에 최적화된 Path Finding 알고리즘이다. 하지만, 모바일 같은 저비용 기기에서 A* 알고리즘을 사용하기엔 단순한 지형에서도 연산 부하가 발생할 수 있다. 본 논문에서는 가상의 공간에서 Grid를 구축하여, 통행이 가능한 곳과 불가능한 곳을 나누어 최종 지점에 도달할 수 있도록 하는 방식을 제안한다. 본 논문에서 제시한 Path Finding Method 는 최종 지점이 막다른 길인 경우 가장 가까운 이동 가능한 경로로 길을 안내하도록 설계하여 예외 상황에 대처했다. 대표적인 길 찾기 알고리즘인 Dijkstra 알고리즘은 최소 비용을 고려해서 최단으로 가는 거리를 비교하여 길을 나타낼 수 있다. 하지만, Dijkstra 알고리즘 경우 비용이 양수가 아닌 음수의 경우 무한 루프에 빠지는 등 결과 값이 제대로 나오지 않을 수 있다. 본 논문에서 제안한 Path Finding Method 는 최소 비용을 노드별로 비교하는 방식이 아닌 초기 비용을 알 수 없는 분야에 쉽게 사용할 수 있다. 본 논문에서는 제안한 Path Finding Method 를 적용하여 Web 게임을 제작하는 것에 성공하였다. 향후, Path Finding Method 결과에 위치 정렬 알고리즘을 적용하여, 중복된 지역을 가는 확률을 최소화하면서 정리된 Path 가 돌출되도록 연구할 예정이다. 본 논문의 Path Finding Method 은 게임 개발 분야에 적극 기여되길 바란다.

High-Speed Path Planning of a Mobile Robot Using Gradient Method with Topological Information (위상정보를 갖는 구배법에 기반한 이동로봇의 고속 경로계획)

  • Ham Jong-Gyu;Chung Woo-Jin;Song Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.444-449
    • /
    • 2006
  • Path planning is a key element in navigation of a mobile robot. Several algorithms such as a gradient method have been successfully implemented so for. Although the gradient method can provide the global optimal path, it computes the navigation function over the whole environment at all times, which result in high computational cost. This paper proposes a high-speed path planning scheme, called a gradient method with topological information, in which the search space for computation of a navigation function can be remarkably reduced by exploiting the characteristics of the topological information reflecting the topology of the navigation path. The computing time of the gradient method with topological information can therefore be significantly decreased without losing the global optimality. This reduced path update period allows the mobile robot to find a collision-free path even in the dynamic environment.

Collision-Free Path Planning for a Redundant Manipulator Based on PRM and Potential Field Methods (PRM과 포텐셜 필드 기법에 기반한 다자유도 머니퓰레이터의 충돌회피 경로계획)

  • Park, Jung-Jun;Kim, Hwi-Su;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.362-367
    • /
    • 2011
  • The collision-free path of a manipulator should be regenerated in the real time to achieve collision safety when obstacles or humans come into the workspace of the manipulator. A probabilistic roadmap (PRM) method, one of the popular path planning schemes for a manipulator, can find a collision-free path by connecting the start and goal poses through the roadmap constructed by drawing random nodes in the free configuration space. The path planning method based on the configuration space shows robust performance for static environments which can be converted into the off-line processing. However, since this method spends considerable time on converting dynamic obstacles into the configuration space, it is not appropriate for real-time generation of a collision-free path. On the other hand, the method based on the workspace can provide fast response even for dynamic environments because it does not need the conversion into the configuration space. In this paper, we propose an efficient real-time path planning by combining the PRM and the potential field methods to cope with static and dynamic environments. The PRM can generate a collision-free path and the potential field method can determine the configuration of the manipulator. A series of experiments show that the proposed path planning method can provide robust performance for various obstacles.

A Graph Search Method for Shortest Path-Planning of Mobile Robots (자율주행로봇의 최소경로계획을 위한 그래프 탐색 방법)

  • You, Jin-O;Chae, Ho-Byung;Park, Tae-Hyoung
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.184-186
    • /
    • 2006
  • We propose a new method for shortest path planning of mobile robots. The topological information of the graph is obtained by thinning method to generate the collision-free path of robot. And the travelling path is determined through hierarchical planning stages. The first stage generates an initial path by use of Dijkstra's algorithm. The second stage then generates the final path by use of dynamic programming (DP). The DP adjusts the intial path to reduce the total travelling distance of robot. Simulation results are presented to verify the performance of the proposed method.

  • PDF

Backward Path Following Using Pure Pursuit Guidance and Nonlinear Guidance for UUV under Strong Current (강한 역류가 발생했을 때 추적 유도법칙과 비선형 유도법칙을 활용한 무인잠수정의 후진 경로 추종)

  • Lee, Jooho;Kim, Nakwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.32-43
    • /
    • 2016
  • A UUV needs to have a robust path following performance because of unpredicted current disturbances. Because the desired path of a UUV is usually designed by considering the locations of obstacles or geographical features of the operation region, the UUV should stay on the desired path to avoid damage or loss of the vehicle. However, conventional path following methods cannot deal with strong countercurrent disturbances. Thus, the UUV may deviate from the desired path. In order to avoid such deviation, a backward path following method is suggested. This paper proposes a path following method that combines pure pursuit guidance and nonlinear guidance for the UUV under an unpredicted strong ocean current. For a stable path following system, this paper suggests that the UUV adjust its heading to the current direction using the pure pursuit guidance method when the system is in an unstable region, or the UUV follows the desired path with nonlinear guidance. By combining the pure pursuit guidance and nonlinear guidance, it was possible to overcome the drawbacks of each path following method in the reverse path following case. The efficiency of the proposed method is shown through simulation results compared to those of the pure pursuit method and nonlinear guidance method.

A Simplified Method to Estimate Travel Cost based on Traffic-Adaptable Heuristics for Accelerating Path Search

  • Kim, Jin-Deog
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.3
    • /
    • pp.239-244
    • /
    • 2007
  • In the telematics system, a reasonable path search time should be guaranteed from a great number of user's queries, even though the optimal path with minimized travel time might be continuously changed by the traffic flows. Thus, the path search method should consider traffic flows of the roads and the search time as well. However, the existing path search methods are not able to cope efficiently with the change of the traffic flows and to search rapidly paths simultaneously. This paper proposes a new path search method for fast computation. It also reflects the traffic flows efficiently. Especially, in order to simplify the computation of variable heuristic values, it employs a simplification method for estimating values of traffic-adaptable heuristics. The experiments are carried out with the $A^*$ algorithm and the proposed method in terms of the execution time, the number of node accesses and the accuracy. The results obtained from the experiments show that the method achieves very fast execution time and the reasonable accuracy as well.

Path Planning for AGVs with Path Tracking (경로 추적 방식의 AGV를 위한 경로 계획)

  • Do, Joo-Cheol;Kim, Jung-Min;Jung, Kyung-Hoon;Woo, Seung-Beom;Kim, Sung-Shin
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.4
    • /
    • pp.332-338
    • /
    • 2010
  • This paper presents a study of path-planning method for AGV(automated guided vehicle) based on path-tracking. It is important to find an optimized path among the AGV techniques. This is due to the fact that the AGV is conditioned to follow the predetermined path. Consequently, the path-planning method is implemented directly affects the whole AGV operation in terms of its performance efficiency. In many existing methods are used optimization algorithms to find optimized path. However, such methods are often prone with problems in handling the issue of inefficiency that exists in system's operation due to inherent undue time delay created by heavy load of complex computation. To solve such problems, we offer path-planning method using modified binary tree. For the purpose of our experiment, we initially designed a AGV that is equiped with laser navigation, two encoders, a gyro sensor that is meant to be operated within actual environment with given set of constrictions and layout for the AGV testing. The result of our study reflects the fact that within such environments, the proposed method showed improvement in its efficiency in finding optimized path.