International Journal of KIMICS, Vol. 5, No. 3, September 2007

239

A Simplified Method to Estimate Travel Cost based on
Traffic-Adaptable Heuristics for Accelerating Path
Search

Abstract—In the telematics system, a reasonable
path search time should be guaranteed from a great
number of user’s queries, even though the optimal
path with minimized travel time might be
continuously changed by the traffic flows. Thus, the
path search method should consider traffic flows of
the roads and the search time as well. However, the
existing path search methods are not able to cope
efficiently with the change of the traffic flows and to
search rapidly paths simultaneously.

This paper proposes a new path search method for
fast computation. It also reflects the traffic flows
efficiently. Especially, in order to simplify the
computation of variable heuristic values, it employs
a simplification method for estimating values of
traffic-adaptable heuristics. The experiments are
carried out with the A* algorithm and the proposed
method in terms of the execution time, the number of
node accesses and the accuracy. The results obtained
from the experiments show that the method achieves
very fast execution time and the reasonable accuracy
as well.

Index Terms—Telematics, Path Search, Heuristics,
Traffic Flows

I. INTRODUCTION

Owing to the rapid growth of the network
communications and the diversification of way to use
information in recent years, the traditional PC with wired
communication plays an important role as an information
creator and the mobile devices with wireless com-
munication will be essential parts as an information
consumer. The CNS(Car Navigation System) is getting a
one of the killer application in the mobile devices such as
mobile phone, PDA and telematics terminal.

There have been many works on finding the paths
with shortest time recently. To find a path with shortest
distance is common approach in telematics systems
conventionally. Even if the path searched from a
telematics device has shortest distance, the path is
always not optimal path in terms of travel time,

Manuscript received June 29, 2007.

Jin-Deog Kim is with the Department of Computer
Engineering, Dongeui University, Busan, 614-714, Korea
(Tel: +82-51-890-1745, Fax: +82-51-890-2629, Email:
jdk@deu.ac.kr)

Jin-Deog Kim, Member, KIMICS

particularly when the road is congested and an accident
occurs. Only few attempts have so far been studied on
finding the paths with shortest travel time.

The path search method in the telematics system
should consider traffic flows of the roads as well as the
shortest travel time. The computation time should be also
fast. It was difficult for the existing path search methods
to reflect the traffic flows. Moreover, the computation
time should be fast. The existing path search methods are
not able to cope efficiently with the change of the traffic
flows. Especially, it is also expected that the client based
path finding would be a sharp rise in demand due to the
lower maintenance cost.

However, the search method to use traffic information
needs more computation time than the existing shortest
path search method. Consequently, the path search
method for telematics needs high accuracy and fast
computation as well. Because queries from a great
number of clients are concentrated upon a server in the
server-oriented system, the fast search with high
accuracy has a direct influence on the efficient
management of the telematics server. In addition, to
reduce its computation time is still a prerequisite in the
client-oriented system in consideration of low system
performance of telematics terminals.

This paper proposes a new path search method
adaptable to traffic information. It is a variation of the
A* algorithm[1,6,8] and uses variable heuristics
according to the change of the traffic flows. Moreover,
the search method employs a simplification method for
estimating values of the adjustable heuristics for the sake
of fast computation. The simplification method only adds
graded decimal values instead of multiplication operation
of floating point numbers.

The experiments conducted on the real-time traffic
data clearly show that the proposed method outperforms
the Dijkstra[3] and the A* algorithm. The simplification
method also contributes greatly to the fast computation
for calculating values to be estimated based on variable
heuristic values. It is expected to be an important
technology for intelligent car navigation of the telematics
system to be widely used.

The rest of this paper is organized as follows. Section
2 investigates the related works on the path search
algorithm. Section 3 examines a new path search method
with the adjustable heuristics and the simplification
method in detail. In section 4, the results of experiments
on real traffic data are presented and analyzed. Finally,
section 5 gives concluding remarks.

240 Jin-Deog Kim : A Simplified Method to Estimate Travel Cost based on Traffic-Adaptable Heuristics for Accelerating Path Search

II. RELATED WORKS

The path search usually means the routes to reach
destination from departure on the roads. Even though the
searched path is shortest, however, the path is always not
optimal path in terms of driving time, particularly when
the road is congested and accidents occur on the
searched path. Therefore, the method to search path in
the telematics should consider traffic information for
shortest travel time.

Many researches on path search have been studied so
far. The Dijkstra algorithm[3] and the A* algorithm[1]
are widely used for path finding. Although the Dijkstra
algorithm yields optimal path in the accuracy, it is a
time-intensive algorithm. The A* algorithm[1] shows a
good performance as a results of employing the heuristic
functions in the execution time. The performance is
dependent on these heuristics. It is very difficult and
time-intensive to decide a proper heuristic, particularly in

the road networks whose flows are continuously changed.

Yang et el[14] proposed an approach to search path in
the hierarchical road networks. It classifies the roads into
three types(Major Road, Highways, Freeways).

Jagadeesh et el[16] proposed a hierarchical routing
algorithm with acceptable loss of accuracy. A network
pruning technique has been incorporated into the
algorithm to reduce the search space. However, it doesn’t
explain how to make a grid and how to adapt traffic flow
into heuristics.

The HiTi graph model[13] also proposed an approach
to structure a topographical road map in a hierarchical
fashion. It also proposed a new shortest path algorithm
named SPAH. However, these don’t apply the traffic
flow in searching path.

There have been many commercial services[9,10] on
the car navigation system recently. Most of them,
however, provide the shortest-distance path only. The
literatures [11,12] proposed another path search
algorithms. The above researches are different from our
study in that they have never dealt with variable
heuristics and the simplification for estimating cost to
goals.

III. PATH SEARCH METHOD

In order to search path in games, the heuristic weights
of the A* are assigned to each pixel respectively[4].
Suppose that telematics system applies the A* to road
network. Road network data are usually irregular and the
number of node is very tremendous. Because assigning
different heuristic weights to each node is very difficult
and laborious, telematics systems have to use a fixed
heuristic weight. As mentioned above, it is impossible to
increase the performances of both the execution time and
the accuracy simultaneously under a fixed heuristic[5].
Moreover, it is also impossible to decide a proper
heuristic value immediately according to traffic flow
changed continuously.

The newly proposed search method looks like A*

except variable heuristics and the simplification. While
the A* generally uses a fixed heuristic value, the
proposed method decides the heuristic according to the
velocity of its roads. We call the methods
APS(Adaptable Path Search) and APSS(Adaptable Path
Search with Simplification)

A. Representation of Road Networks
Figure 1 shows the road networks with orientation and
rotation information.

o
x\:]

e
L e
)
:

3

® a”\»@
®
Fig. 1 Road Networks with Orientation and Rotation

In this paper, the road networks are represented by
link-oriented approach. Each link has several connected
link lists which express orientation and rotation
information. For example, link E12 in the figure 2 is a
link from node 1 to node 2. When the car goes through
node 2, it can go the link E23(left turn) or E21(U-turn).
The proposed link-oriented representation can reflect
partial update immediately in the telematics devices.

£12
E21
E23
E32
E14
Ea
E34
E43
E45
E54
E65

- S Rign(e)
'\l\u_Left, Straight(x)

VL v vy v vy v v Yy v v v

Fig. 2 Representation of Link-Oriented Road Networks

B. Adjustable Heuristic based on Fixed Grid

For the sake of efficient path search, we would like to
focus attention on a new method to adjust heuristic to
traffic flow immediately without human’s interference.

In order to adjust heuristic to continuously changed
traffic flow, this paper employs the fixed grid[2,7]. The
fixed grid decomposes entire map space into a number of
unit cells, and each cell contains several roads.

The values for heuristics of each grid cell are
determined as the maximum velocity of the roads
contained in each cell as shown in figure 3.

International Journal of KIMICS, Vol. 5, No. 3, September 2007

241

20

008 @00

Fig. 3 Heuristic Value of Grid Cell

The velocity of the road is in inverse proportion to
driving time. Thus, the heuristic weight is also in inverse
proportion to the value. For example, while the high
value(weak heuristic) could be assigned at the light
traffic for high accuracy, the low value(strong heuristic)
could be assigned at the heavy traffic for fast
computation. Therefore, the adjustable heuristic is
expected to bring about high accuracy and fast response
time as well. The heuristic weight can be defined as
follows.

heuristic weight = length of road link /

velocity of road link

The shape of the search space of the A* is nearly a
single ellipse with a departure and a destination as the
peak points of ellipse. At the strong heuristic, the shape
is narrow. At the weak heuristic, the shape is nearly
circular.

The APS and APSS carry out partial search on the
basis of each grid unlike the A*. The partial search
yields the reduction of the search space and the
execution time as well. Moreover, the search space is
adaptable to current traffic flow.

C. Algovithm of the APS

The APS algorithm visits all the nodes connected with
a current node, and then selects a node to be estimated
that it has a minimum travel cost[15]. If the node is goal,
the search is completed. The following pseudo code
describes the APS algorithm.

APS Algorithm

{ Input: Start & Goal Node
Data : Heuristic Value of Each Grid
Output : Optimal_Path(List of Node)

CurrentNode = Start;
ClosedNode.Add(CurrentNode);
While(CurrentNode != GoalNode)
{ Get Nodes connected CurrentNode;
/1 exclude the nodes of ClosedNode
OpenNode.Add(Nodes)
ForEach(Ni in OpenNode)
{ Calc. Cost of each Node
Cost : F(Ni) = G(Ni) + H(Ni),
G(Ni) : Cost_From_Start(Ni)
H(Ni) : Cost_To_Goal(Ni)

}
Select Nj which has min F(n);
CurrentNode = Nj;

ClosedNode.Add(CurrentNode);

}
Optimal_Path : ClosedNode
}

The cost of each node could be defined as follows :
f(n) = g(n) + h(n). The g(n) is the already calculated
travel cost from departure to current node. The h(n) the
APS algorithm is the estimated travel cost to goal. The
adjustable heuristics are used for estimating the h(n). The
OpenNode of algorithm is a set of candidate nodes to be
visit, and the ClosedNode is a set of already selected
nodes. The following pseudo code describes the function
‘Cost_To_Goal’.

Cost To_Goal Function

{ Input : Ni, GoalNode

Data : Heuristic Value of Each Grid
Output : Estimated Cost to Goal Node

Draw a straight line from Ni to Goal

Get Grids overlapped with the line

EstimatedCost = 0;

ForEach(Gi in Grids)

{ EstimatedCost += LineLength(Gi) / Heu(Gi) }
return EstimatedCost

)

The outstanding difference between the A* and the
APS is the method to get the cost h(n). For efficient
estimating the cost, this paper applies the above
adjustable heuristics into APS algorithm as shown in the
function ‘Cost_To_Goal’.

For example, if the maximum speed of a grid is very
low, the cost h(n) would be overestimated. It yields
strong heuristic weight and the fast computation. On the
contrary, if the maximum speed is very high, the cost
would be underestimated, and the accuracy increases.

Therefore, the APS with adjustable heuristics can
search a near optimal path because of the fast
computation at the traffic congestion and the accurate
search at the light traffic.

D. APSS with Simplification for Estimated Cost

The above function, Cost_To_Goal, needs to measure
the length of line in each grid cell. It requires so several
complex floating point computations that it results in
slow computation.

In order to reduce this computation time, a new
simplification method for estimating cost to goal is
proposed in this paper. The following pseudo code
describes the simplification method.

Simplified Cost To Goal Function

{ Input: Ni, GoalNode

Data : Heuristic Value of Each Grid
Output : Estimated Cost to Goal Node

Get a grid cell(Gceur) to contain Ni
Get a grid cell(Gdes) to contain Goal
Get center points(Ccur, Cdes) of Geur and Gdes
Calc. slope(Sstart) between Cur and Cdes
Do {
Calc. slope(Scur) between center of Ni and Cdes
If (Sstart <= Scur)
Geur = adjacent Grid of X axis added by 1

242 Jin-Deog Kim : A Simplfied Method to Estimate Trave! Cost based on Traffic-Adaptable Heuristics for Accelerating Path Search

Else Geur = adjacent Grid of Y axis added by 1
} While(Geur != Cdes)
EstimatedCost = Length to Goal / Average Heu.(Geur)
Return EstimatedCost

}

Figure 4 shows the difference between the APS and
the APSS. The APSS only adds graded decimal values
instead of multiplication operation of floating point
numbers with due regard to the gradient between a
departure and a destination in order to simplify the
computation of estimation values. The estimated cost of
APS is (14.14/28 + 23.49/35 + 37.47/57 + 15.52/45 +
34.76/38) = 3.093. The estimated cost of APSS is 125.38
/ ((28+35+57+45+38)/5) = 3.088. Therefore, while the
estimated cost is nearly identical, the computation step is
greatly simplified. The effect of this simplification will
be discussed in section 4.

o
Current Node Current Node
8 @ % 51 % @ 51
R RO
\‘ ‘Ky \‘:\y
‘\ ‘\
A \J
62 5&1 45 62 57\s, | 45
) N
\J \
\ N
; o
S e Y
19 25 &:‘ 19 25 g\‘-,
"y "
Goat Goal
(a) APS (b) APSS

Fig. 4 Estimating Cost to Goal

E. Performance Tuning

Even though the APSS is expected to show fast
computation, the accuracy will slightly decrease. For the
high accuracy, the change of the size of grid is worth
consideration. In case of small-sized grid, the accuracy

might increase because the APSS reflects more heuristics.

Figure 5 shows these phenomena. The heuristics 57 and
38 of long lines in the figure are represented by 3 times
respectively. The heuristics of the line is reflected as
much as the length of line. Thus, the results of the path
search are more accurate, even though the computation
time slightly increases.

o]

2¢ Current Node!
X
7R 35

(N _————

A3 ‘\57

L, o
\
.
h 3

/‘\" 38
N 24
38) yy

~~ |
38 Cos

Fig. 5 Change of Grid-Size

IV. PERFORMANCE EVALUATION

The performances of the APS and APSS are compared
with the Dijkstra and the A*. The test data for
experiments are the road networks and real-time traffic
data in Busan City. The path searches are carried out 700
times. The departure and the destination are selected
randomly. The fixed heuristic values of the A* algorithm
are 20, 40, 60, 80, 100 respectively. Figure 6 shows the
path search program which is implemented on the
Pentium IV PC and the C++ programming language.

‘
ooy e
j
I I S i
I nn‘na"-"n.nz
}J q;‘;r‘si:mx I T Ets
_1“ 22at 2384240 0372 rifesd s N
‘__I_/zulz.t:'u?}v.s i oo e O Y ' .
|uu zulnuumunzz/nxuduwnux e 5% t ez 3 o
Hhosteaemmiin il ol S| SEZIE 1 L
us‘%\g_g\m}m o3 3z ol b P - et
r'T T gy 4
Uinergnes T T R e e s et
AT A I
K

Fig. 6 Implementation of Path Search System

A. Accuracy

The terminology ‘accuracy’ in this paper can be
defined as follows. The accuracy of Dijkstra algorithm is
always 100% as mentioned above.

travel distance of optimal path

acouracy =
travel distance of a given algorithm
Figure 7 depicts the accuracies of the A* and the APS.
The APS generally outperforms A* algorithms except
very high heuristic value(weak heuristic). In the A*, the
execution time is in inverse proportion to the accuracy.
Figure 7 and 8 will show this characteristic of the A*.

accu.(%)
100 1

90

80

70

- T

60

Dijkstra A*(20) A*(40) A*(60) A*(80) A*(100) APS

Fig. 7 Average Accuracy

The relationship between the accuracy and the travel
distance is shown in table 1. The performance of short
distance is better than that of long distance. If the
distance is long, the accuracy is low. At the long distance
and low heuristic value, the accuracy of the A* is very
low(about 50%). On the contrary, the APS shows good

International Journal of KIMICS, Vol. 5, No. 3, September 2007

243

performances (about 95% and more) regardless of the
travel distances.

Table 1 Accuracy by Travel Distance

othod | .. | A* | A% | A* | A* | A*
distand Dijk. { 20 | 40 | 60 | 80 | 100 | AFS

short(~10k) | 100 | 90.2 | 93.1 | 952 | 985 | 100 | 99.8

mid.(10~40k) | 100 [70.5 | 88 92 953|993 | 958

long(40k~) | 100 | 52.9 | 80.4 | 87.7 [934 | 99 95.1

B. Execution Time

Figure 8 depicts the average execution time for
searching paths. The times of the Dijkstra are always
longer than the others. The execution time of the A* is
various according to heuristic weight. Generally the
average execution time of the APS is even shorter than
that of the A* except very strong weight. While the
execution time of the A* is very short at the strong
weight(low value), the accuracy is very high as shown in
the figure 7. The experimental results show that the
execution time coincides with our previous expectations.

time(s)
20 p—ne -

Dijkstra A*(20) A*(40) A*(60) A*(80) A%(100) APS

Fig. 8 Average Execution Time

The table 2 summarizes the execution of each method
in case of various travel distances. At the long distance
and high heuristic value, the execution time of the A* is
very long(near to Dijkstra). The APS shows reasonable
response time regardless of the travel distances.

Table 2. Execution Time by Travel Distance

ethod
distance

| Aa* | A* | A* | A% | A*
Dijk. | 50 | 40 | 60 | 80 | 100 | AFS

short(~10k) 39 0.03 | 034|084 | 128 | 1.63 [0.13

mid.q0489 | 2335 | 065 [66 | '}¥ | 147|165 | 23
long(d0k~) | 47.56 | 74 | 34 | 424 | 448 | 457 | '2°

C. Analysis of Each Method

Although the accuracy of the Dijkstra is always
best(100%), the execution time and the number of node
accesses is always worst.

The accuracy of the APS closes on that of the Dijkstra.
The execution time and the number of node accesses of

the APS are just 12% and 25% of the Dijkstra
respectively. Particularly, because the APS is able to
adjust the heuristic weight to traffic flow, it might bring
about near optimal path.

The performances of the A* and the APS under the
same conditions are analyzed in the figure 9. If the
execution times are nearly the same, the APS definitely
outperforms the A* in the accuracy(figure 9.a). If the
accuracies are nearly the same, the APS also outperforms
the A* in the execution time. The APS needs only 10%
time of the A*(figure 9.b). If the accuracies are nearly
the same, the APS also shows a good performance(figure
9.c).

accuracy (%) #ofNodeAccess

X100
96 350()

94 300

250

200

90 150

88 100

A* APS A* APS

(b) time
Fig. 9 Performance Comparison(A* vs. Grid)

(a) accuracy (c) node access

D. Effect of Simplification

Figure 10 shows the performances of APS and APSS.
Even though the performance of APS is slightly better
than that of APSS(about 0.3) in the accuracy aspect, the
APSS outperforms APS(about 60%) in the operation
time.

time(s) accuracy(%)

o

98

96

9%

9

90

(a) time
Fig. 10 Effect of the Simplification

(b) accuracy

V. CONCLUSIONS

This paper proposed APSS which is a new path search
method for fast computation. It also reflects the traffic
flows efficiently. The method uses adjustable heuristics
for reflecting the traffic flows and simplifies the step for
estimating cost to goal. The proposed APSS achieved
good performances at the execution time and the
accuracy as well. The APSS is also able to reflect real-
time traffic flows due to the adjustable heuristic and the
simplification method.

The results obtained from the experiments show that
the execution time and the accuracy of the A* are easily
influenced by the heuristic weight nevertheless it could

244 Jin-Deog Kim ; A Simplified Method to Estimate Travel Cost based on Traffic-Adaptable Heuristics for Accelerating Path Search

not be determined automatically by the system.
Moreover, there is no way to upgrade both the execution
time and the accuracy simultaneously. On the contrary,
the APS achieves good performances in terms of the
operation time(12% of the Dijkstra) and the
accuracy(about 95% of the Dijkstra). The APSS
improves the operation time(about 60% of the APS).

In summary, it seems reasonable to conclude that the
proposed APSS is appropriate for the telematics server
which should process a great number of queries from the
several clients and the telematics clients with low
processing capacity. Particularly, because the pre-
searched path should be recalculated whenever the traffic
flow changes, the APSS with fast execution and the
adjustability is expected to be important technology for
telematics system to be widely used recently.

REFERENCES

[1] http://en.wikipedia.org/wikiA%2A_search_algorith
m.

[2] H. Lu, B.C. Ooi, “Spatial Indexing : Past and
Future”, JEEE Data Engineering Bulletin, Vol. 16,
No. 3, pp 16-21, 1993.

[3] William Stallings, "Data & Computer Communi-
cations, sixth Edition", Prentice Hall, Inc, 2001.

[4] http://theory.stanford.edu/~amitp/Game.
Programming.

[S] Stephan Winter, "Modeling Costs of Truns in Route
Planning", Journal of Geolnformatica, Vol. 6, No. 4,
Pp- 345-360, 2002

[6] Se-Il Lee, “Units’ Path Finding Method Proposal for
A*Algorithm in the Tilemap, Journal of KCSI, Vol.
9, No. 3, pp. 71-77, 2004.

[7] Hyun-Sub Lee, Jun-Hwan An, Jin-Deog Kim,
“Optimal Path Navigation Algorithm based on
Traffic Information”, Proc. of KMIC, Vol.8, No. 2,
pp. 425-428, 2004.

[8] H. Kaindl, G. Kainz, "Bidirectional Heuristic Search
Reconsidered”, Journal of Artificial Intelligence
Research, Vol.7, pp.283-317, 1997.

[9] http://qnavi.bizemeka.com.

[10] htp://drive.nate.com.

[11] Stefano Pallottino, Maria Grazia Scutella, "Shortest
Path Algorithms in Transportation Models
Classical and Innovative Aspects”, TR, Univ. of Pisa,
1998.

[12]Woo Young Kwon, Sanghoon Lee, Il Hong Suh,

“A reinforcement learning approach involving a
shortest path finding algorithm ” , Proc. of
TR0OS2003, Vol. 1, pp. 436-441, 2003.

[13]Sungwon Jung, Sakti Pramanik, “An Efficient Path
Computation Model for Hierarchically Structured
Topographical Road Maps”, TKDE, Vol. 14, No. 5,
pp.1029-1046, 2002.

[14]T. A. Yang, S. Shekhar, B. Hamidzadeh and P. A.
Hancock, “Path planning and evaluation in IVHS

databases,” VNIS, pp.283-290, 1991.

[15]J. D. Kim, D.H. Kim, D.S. Cho, C.H. Ban, K.H.
Kim, K.W. Min, “An Efficient Path Search Method
based on Adjustable Heuristic to Traffic Flow”,
APIS, Vol. 6, pp. 510-513, 2007.

[16]G. R. Jagadeesh, T. Srikanthan, K. H. Quek,
“Heuristic Techniques for Accelerating Hierarchical
Routing on Road Networks”, IEEE Trans.
Intelligent Transportation Systems, Vol. 3, No. 4, pp.
301-309, 2002.

Jin-Deog Kim

was born in Busan, Korea, 1968.
He received his undergraduate
education at the Busan National
University, Korea. He earned his
M.S. and Ph.D. in Computer Engi-
neering from the Busan National
University, Korea. He is currently
with the Department of Computer Engineering, Dongeui
University as an associated professor. He has published
over 100 papers in the areas of database and
geographical information system. His areas of research
include a query processing in the spatial database,
parallel processing of spatial operation, update strategy
of moving object, path search method in the telematics
systems and LBS application with RFID, etc.

