• Title/Summary/Keyword: PAT (process analytical technology)

Search Result 6, Processing Time 0.017 seconds

Process analytical technology (PAT): field applications and current status in pharmaceutical industries (공정분석기술: 제약산업에서의 기술개발 사례 및 현황)

  • Woo, Young-Ah;Kim, Jong-Yun;Park, Yong Joon;Yeon, Jei-Won;Song, Kyuseok;Kim, Hyo-Jin
    • Analytical Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.35-43
    • /
    • 2009
  • The goal of PAT (Process Analytical Technology) is to build quality into products through better understanding and control of manufacturing processes, rather than merely testing the quality of the end product. Pharmaceutical manufacturers are trying to develop and implement new technologies in pharmaceutical production and quality control for real-time measurements of critical product and process parameters. Characterization of manufacturing process through experimental design, for evaluation of the effect of product and process variables, represents an integral part of the PAT framework. However, the publications regarding real PAT application to pharmaceutical process are very limited and the technologies are confidential as well. In this review, the case studies related to PAT are shown with real applications from a pharmaceutical company. Additionally, various applications of PAT on the developing stage are introduced with high analytical technologies for the improvement of quality control on manufacturing process.

Process analytical technology (PAT): new paradigm for the state-of-the-art analytical technology (공정분석기술: 첨단 분석기술의 새로운 패러다임)

  • Kim, Jong-Yun;Park, Yong Joon;Yeon, Jei-Won;Woo, Young-Ah;Kim, Hyo-Jin;Song, Kyuseok
    • Analytical Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.345-363
    • /
    • 2008
  • Process analytics has been already widely utilized in a large-scale continuous production line such as petroleum industries for several decades. Although the process analytics has a long history, a concept of "Process Analytical Technology (PAT)" has been rapidly adopted as a new paradigm for the process monitoring in the production process of various industries. In this review, current status and recent developments of PAT in various research bodies have been introduced, including the introduction of various types of analytical instruments, chemometrics tools, and perspectives and future applications of PAT as well as the fundamentals on PAT such as terminology and its historical background.

Development of Process Analytical Technology (PAT) for Total Quality Innovation on Pharmaceutical Processes (의약품 제조공정에서의 전사적 품질혁신을 위한 공정분석기술 개발)

  • Shin, Sang-Mun;Park, Kyung-Jin;Choi, Yong-Sun;Lee, Sang-Kil;Choi, Guang-Jin;Kwon, Byung-Soo;Cho, Byung-Rae
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.6
    • /
    • pp.329-338
    • /
    • 2007
  • The quality assurance issue of drug products is more important than the general product because it is highly related to the human health and life. In this reason, the regulatory guide lines have continuously been intensified all around the world. In order to achieve effective quality assurance and real-time product release (RTPR) of drug products, process analytical technology (PAT), which can analyze and control a manufacturing process, has been proposed from the United States. With the PAT process, we can obtain significant process features of materials, quality characteristics and product capabilities from a raw material to the final product in the real-time procedure. PAT can also be utilized to process validation using information system that can analyze the risk of drug products through out an entire product life-cycle. In this paper, we first offered a new concept for the off-line process design methods to prepare the improved quality assurance restrictions and a real-time control method by establishing an information system. We also introduced an automatic inspection system by obtaining surrogate variables based on drug product formulations. Finally, we proposed an advanced PAT concept using validation and feedback principles through out the entire life-cycle of drug product manufacturing processes.

In-line Monitoring of Fluid-Bed Blending Process for Pharmaceutical Powders using Fiber Optics Probe and NIR Spectroscopy (광섬유-탐침과 근적외선(NIR) 분광기를 이용한 약제분말 유동층 혼합공정의 인라인 모니터링 연구)

  • Park, Cho-Rong;Kim, Ah-Young;Lee, Min-Jeong;Lee, Hea-Eun;Seo, Da-Young;Shin, Sang-Mun;Choi, Yong-Sun;Kwon, Byung-Soo;Bang, Kyu-Ho;Kang, Ho-Kyung;Kim, Chong-Kook;Lee, Sang-Kil;Choi, Guang-Jin
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.1
    • /
    • pp.29-36
    • /
    • 2009
  • Since the quality of final products is significantly affected by the homogeneity of powder mixture, the powder blending process has been regarded as one of the critical pharmaceutical unit processes, especially for solid dosage forms. Accordingly, the monitoring to determine a blending process' end-point based on a faster and more accurate in-line/on-line analysis has attracted enormous attentions recently. Among various analytical tools, NIR (near-infrared) spectroscopy has been extensively studied for PAT (process analytical technology) system due to its many advantages. In this study, NIR spectroscopy was employed with an optical fiber probe for the in-line monitoring of fluid-bed blending process. The position of the probe, the ratio of binary powder mixture, the powder size differential and the back-flush period of the shaking bag were examined as principal process parameters. During the blending process of lactose and mannitol powders, NIR spectra were collected, corrected, calibrated and analyzed using MSC and PLS method, respectively. The probe position was optimized. A reasonable end-point was predicted as 1,500 seconds based on 5% RSD value. As a consequence, it was demonstrated that the blending process using a fluid-bed processor has several advantages over other methods, and the application of NIRS with an optical fiber probe as PAT system for a fluid-bed blending process could be high feasible.