• Title/Summary/Keyword: PARSEC

Search Result 52, Processing Time 0.043 seconds

Physical Properties of Molecular Clouds in NGC 6822 Hubble V

  • Lee, Hye-In;Pak, Soojong;Oh, Heeyoung;Le, Huynh Anh N.;Lee, Sungho;Lim, Beomdu;Tatematsu, Ken'ichi;Park, Sangwook;Mace, Gregory;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.66.4-66.4
    • /
    • 2019
  • NGC 6822 is a dwarf irregular galaxy whose metal abundance is lower than of the Large Magellanic Cloud. Hubble V is the brightest HII complex where molecular clouds surround the core cluster of OB stars. Because of its proximity (d = 500 kpc), we can resolve the star-forming regions on parsec scales (1 arcsec = 2.4 pc). Using the high-resolution (R = 45,000) near-infrared spectrograph, IGRINS, we observed molecular hydrogen emission lines from photo-dissociation regions (PDRs) and $Br{\gamma}$ emission line from ionized regions. In this presentation, we compare our data PDR models in order to derive the density distribution of the molecular clouds on parsec scales and to estimate the total mass of the clouds.

  • PDF

Feasibility Study of Hierarchical Kriging Model in the Design Optimization Process (계층적 크리깅 모델을 이용한 설계 최적화 기법의 유용성 검증)

  • Ha, Honggeun;Oh, Sejong;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.2
    • /
    • pp.108-118
    • /
    • 2014
  • On the optimization design problem using surrogate model, it requires considerable number of sampling points to construct a surrogate model which retains the accuracy. As an alternative to reduce construction cost of the surrogate model, Variable-Fidelity Modeling(VFM) technique, where correct high fidelity model based on the low fidelity surrogate model is introduced. In this study, hierarchical kriging model for variable-fidelity surrogate modeling is used and an optimization framework with multi-objective genetic algorithm(MOGA) is presented. To prove the feasibility of this framework, airfoil design optimization process is performed for the transonic region. The parameters of PARSEC are used to design variables and the optimization process is performed in case of varying number of grid and varying fidelity. The results showed that pareto front of all variable-fidelity models are similar with its single-level of fidelity model and calculation time is considerably reduced. Based on computational results, it is shown that VFM is a more efficient way and has an accuracy as high as that single-level of fidelity model optimization.

Performance Analysis of A Distributed Shared Memory System Including Minor Performance Factors (군소 성능요인을 고려한 분산공유메모리 시스템 성능의 정밀분석)

  • 박준석;전창호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10c
    • /
    • pp.671-673
    • /
    • 2000
  • 본 논문에서는 분산공유메모리 다중프로세서 시스템에서 하드웨어 구성요소와 실행환경이 시스템의 전체 성능에 미치는 영향을 시뮬레이션을 통하여 분석한다. PARSEC[1,2]을 이용하여 분산공유메모리 다중프로세서 시스템을 실제 실행환경에 근접하게 모델링하고 그 모델링된 시스템상에 2D FFT를 가상 실행하는 방식의 시뮬레이션 결과, 일반적으로 성능분석을 할 때 성능요소로 고려하지 않는 군소 하드웨어 요소들이 시스템 구성에 따라 시스템의 전체 성능에 상당한 영향을 미침을 밝힌다. 또한 반복순환 구문의 오버헤드, 코드최적화 등 실행조건에 따른 성능의 변화도 정량적으로 분석한다.

  • PDF

SMALL-SCALE REGULAR STRUCTURES IN SUPERNOVAE PROGENITORS

  • TSIOPA O. A.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.215-216
    • /
    • 1996
  • The wind-formed features observed in the early SNe spectra type II and Ia give an evidence of the existence of an ellipsoidal shell formed by the stellar wind prior to the explosion. Such non-spherical shell can occur not only at scales of parsec (the case of SN 1987 A progenitor), but at the scales of 1000 times less. Such shells can be the result of the radial pulsation. The prolate multi-shell structures are interpreted as a result of a pulsation processes with recurrent wind ejections with velocity increasing.

  • PDF

Formation of star clusters by cloud-cloud collision

  • Han, Daniel;Kimm, Taysun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.68.3-68.3
    • /
    • 2019
  • We present the preliminary results on the formation of star clusters by cloud-cloud collision. For this purpose, we perform sub-parsec scale, radiation-hydrodynamic simulations of giant molecular clouds using a sink particle algorithm. The simulations include photo-ionization, direct radiation pressure, and non-thermal radiation pressure from infrared and Lyman alpha photons. We confirm that radiation feedback from massive stars suppresses accretion onto sink particles. We examine the collision-induced star formation and discuss the possibility on the formation of a globular cluster.

  • PDF

Optical Long-slit Spectroscopy of Parsec-scale Jets from DG Tauri

  • Oh, Heeyoung;Pyo, Tae-Soo;Yuk, In-Soo;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.69.1-69.1
    • /
    • 2015
  • Classical T Tauri star DG Tau is suggested as the driving source of parsec-scale jet which expands up to 650" (0.4 pc). To investigate the kinematics and physical properties of the jet, we have obtained the optical emission lines of $H{\alpha}$, [O I] ${\lambda}{\lambda}$6300, 6363, [N II] ${\lambda}{\lambda}$6548,6584, and [S II] ${\lambda}{\lambda}$6716, 6731 from HH 158 ad HH 702. The radial velocity of HH 158 is in the range of -50 to $-250km\;s^{-1}$. For HH 702, located at 650" from the source, it shows ~ $-80km\;s^{-1}$. In HH 158, the electron density ($n_e$) close to the star is ${\sim}10^4cm^{-3}$ and it decreases to ${\sim}10^2cm^{-3}$ at 14" away from the star. Electron temperature ($T_e$) is decreasing from >15,000 K to ~5,000 K with distance. Ionization fraction ($x_e$) is increasing from almost zero to > 0.4 along the distance. In HH 702, the values of $n_e$, $T_e$, and $x_e$ are similar to those estimated at 14" from source, where knot C of HH 158 is located. This may imply that the physical properties of the knot could persist through such a long distance in the space, and the gas could be re-excited by the shock during propagation of the jet. On the other hand, we cannot avoid the possibility that HH 702 is driven by another source rather than DG Tau because HH 158 and HH 702 show somewhat large difference in their inclination angles (${\Delta}i=21-35^{\circ}$).

  • PDF

Efficient Process Checkpointing through Fine-Grained COW Management in New Memory based Systems (뉴메모리 기반 시스템에서 세밀한 COW 관리 기법을 통한 효율적 프로세스 체크포인팅 기법)

  • Park, Jay H.;Moon, Young Je;Noh, Sam H.
    • Journal of KIISE
    • /
    • v.44 no.2
    • /
    • pp.132-138
    • /
    • 2017
  • We design and implement a process-based fault recovery system to increase the reliability of new memory based computer systems. A rollback point is made at every context switch to which a process can rollback to upon a fault. In this study, a clone process of the original process, which we refer to as a P-process (Persistent-process), is created as a rollback point. Such a design minimizes losses when a fault does occur. Specifically, first, execution loss can be minimized as rollback points are created only at context switches, which bounds the lost execution. Second, as we make use of the COW (Copy-On-Write)mechanism, only those parts of the process memory state that are modified (in page units) are copied decreasing the overhead for creating the P-process. Our experimental results show that the overhead is approximately 5% in 8 out of 11 PARSEC benchmark workloads when P-process is created at every context switch time. Even for workloads that result in considerable overhead, we show that this overhead can be reduced by increasing the P-process generation interval.

Dynamic Directory Table: On-Demand Allocation of Directory Entries for Active Shared Cache Blocks (동적 디렉터리 테이블 : 공유 캐시 블록의 디렉터리 엔트리 동적 할당)

  • Bae, Han Jun;Choi, Lynn
    • Journal of KIISE
    • /
    • v.44 no.12
    • /
    • pp.1245-1251
    • /
    • 2017
  • In this study we present a novel directory architecture that can dynamically allocate a directory entry for a cache block on demand at runtime only when the block is shared by more than one core. Thus, we do not maintain coherence for private blocks, substantially reducing the number of directory entries. Even for shared blocks, we allocate directory entry dynamically only when the block is actively shared, further reducing the number of directory entries at runtime. For this, we propose a new directory architecture called dynamic directory table (DDT), which is implemented as a cache of active directory entries. Through our detailed simulation on PARSEC benchmarks, we show that DDT can outperform the expensive full-map directory by a slight margin with only 17.84% of directory area across a variety of different workloads. This is achieved by its faster access and high hit rates in the small directory. In addition, we demonstrate that even smaller DDTs can give comparable or higher performance compared to recent directory optimization schemes such as SPACE and DGD with considerably less area.

LONG-SLIT SPECTROSCOPY OF PARSEC-SCALE JETS FROM DG TAURI

  • Oh, Heeyoung;Pyo, Tae-Soo;Yuk, In-Soo;Park, Byeong-Gon
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.2
    • /
    • pp.113-123
    • /
    • 2015
  • We present observational results from optical long-slit spectroscopy of parsec-scale jets of DG Tau. From HH 158 and HH 702, the optical emission lines of Hα, [O i] λλ6300, 6363, [N ii] λλ6548, 6584, and [S ii] λλ6716, 6731 are obtained. The kinematics and physical properties (i.e., electron density, electron temperature, ionization fraction, and mass-loss rate) are investigated along the blueshifted jet up to 650′′ distance from the source. For HH 158, the radial velocity ranges from −50 to −250 km s−1. The proper motion of the knots is 0.′′196 − 0.′′272 yr−1. The electron density is ∼104 cm−3 close to the star, and decreases to ∼102 cm−3 at 14′′ away from the star. Ionization fraction indicates that the gas is almost neutral in the vicinity of the source. It increases up to over 0.4 along the distance. HH 702 is located at 650′′ from the source. It shows ∼ −80 km s−1 in the radial velocity. Its line ratios are similar to those at knot C of HH 158. The mass-loss rate is estimated to be about ∼ 10−7 M yr−1, which is similar to values obtained from previous studies.

BAT AGN Spectroscopic Survey - The parsec scale jet properties of the ultra hard X-ray selected local AGNs

  • Baek, Junhyun;Chung, Aeree;Schawinski, Kevin;Oh, Kyuseok;Wong, Ivy;Koss, Michael
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.35.4-35.4
    • /
    • 2019
  • We have conducted a 22 GHz very long baseline interferometry (VLBI) survey of 281 local (z < 0.05) active galactic nuclei (AGNs) selected from the Swift Burst Alert Telescope (BAT) 70-month ultra hard X-ray (14-195 keV) catalog. The main goal is to investigate the relation between the strengths of black hole accretion and the parsec-scale nuclear jet, which is expected to tightly correlate but has not been observationally confirmed yet. The BAT AGN Spectroscopic Survey (BASS) provides the least biased AGN sample against obscuration including both Seyfert types, hence it makes an ideal parent sample for studying the nuclear jet properties of an overall AGN population. Using the Korean VLBI Network (KVN), the KVN and VERA Array (KaVA), and the Very Long Baseline Array (VLBA), we observed 281 objects with a 22 GHz flux > 30 mJy, detecting 11 targets (~4% of VLBI detection rate). This implies that the fraction of X-ray AGNs which are currently ejecting a strong nuclear jet is very small. Although our 11 sources span a wide range of pc-scale morphological types, from compact to complex, they lie on a tight linear relation between accretion luminosity and nuclear jet luminosity. Our finding may indicate that the power of nuclear jet is directly responsible for the amount of black hole accretion. We also have probed the fundamental plane of black hole activity in VLBI scale (e.g., few milli-arcsecond). The results from our high-frequency VLBI radio study support that the change of jet luminosity and size follows what is predicted by the AGN evolution scenario based on the Eddington ratio (ƛ$_{Edd}$) - column density ($N_H$) plane, proposed by a previous study.

  • PDF